
Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 1

Chapter 1 1

Chapter 1

� Background information
» important regardless of programming language

� Introduction to Java

Introduction to Computers and
Java Objects

Chapter 1 2

Computer Basics

� Computer system: hardware + software
� Hardware: the physical components
� Software: the instructions that tell the

hardware what to do

Chapter 1 3

Common Hardware Components

� Processor (CPU)
» Central Processing Unit
» Interprets and executes the

instructions

� Memory
» main & auxiliary
» holds data and instructions

� Input device(s)
» mouse, keyboard, etc.

� Output device(s)
» video display, printer, etc.

� CPU and memory are
physically housed together

Standard Hardware
Organization

Memory
(main & auxiliary)

Processor
(CPU)

Input
Devices

(such as mouse and
keyboard)

Output
Devices
(such as video

display or printer)

Chapter 1 4

Physical Organization

� Keyboard
� Monitor
� Chassis

» CPU
» memory
» disk drives
» I/O connectors
» etc.

Chapter 1 5

Two Kinds of Memory

� Main
» working area
» temporarily stores program and data (while program is

executing)

� Auxiliary
» permanent (more or less)
» saves program and results
» includes floppy & hard disk drives, CDs, tape, etc.

Chapter 1 6

Main Memory Organization

� Bit = one binary digit
» Binary digit can have

only one of two values, 0
or 1

� Byte = 8 bits
� “Byte Addressable”

» Main memory is a list of
numbered locations that
contain one byte of data
in each location

� Number of bytes per data
item may vary

Address Data Byte

3021 1111 0000 Item 1: 2 bytes
stored

3022 1100 1100

3023 1010 1010 Item 2: 1 byte
stored

3024 1100 1110 Item 3: 3 bytes
stored

3025 0011 0001

3026 1110 0001

3027 0110 0011 Item 4: 2 bytes
stored

3028 1010 0010

3029 … Next Item, etc.

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 2

Chapter 1 7

Auxiliary Memory Organization

Files

Files

Files

Files

Subdirectory

Subdirectory Files

Subdirectory

Files

Subdirectory

Subdirectory Subdirectory

Main (Root) Directory / Folder

Auxiliary Memory Organization

Chapter 1 8

Running a Program

Program

ComputerData
(input for the program) Output

Program—a set of instructions for a computer to follow

Chapter 1 9

Many Types of Programs

� User-created applications
� Existing applications

» word-processor/editor
» web browser
» compiler or assembler
» etc.

� Operating System
» DOS, MS- Windows(3.x, 95, 98, NT), MacOS,

UNIX, etc.

Chapter 1 10

Various Types of User Interfaces

� Command-line
» type in key words and letters
» DOS and UNIX

� Menu
» parts of DOS and Windows

� GUI (Graphical User Interface)
» click on icon
» also called “event-driven”
» MacOS, Windows

Chapter 1 11

Programming Language Hierarchy

Hardware

Machine Language

Assembly Lanuage

High-Level Language (HLL)

Chapter 1 12

The highs and lows of programming languages ...

� High-Level Language (HLL)
» closest to natural language
» words, numbers, and math

symbols
» not directly understood by

hardware
» “portable” source code

(hardware independent)
» Java, C, C++, COBOL,

FORTRAN, BASIC, Lisp,
Ada, etc.

� Machine Language
(lowest level)
» least natural language for

humans, most natural
language for hardware

» just 0s and 1s
» directly understood by

hardware
» not portable (hardware

dependent)

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 3

Chapter 1 13

Assembly Language
(middle level)

� a more or less human readable version of machine
language

� words, abbreviations, letters and numbers replace 0s
and 1s

� easily translated from human readable to machine
executable code

� like machine code, not portable (hardware
dependent)

Chapter 1 14

Getting from Source
to Machine Code

� “Compiling a program”
translating from a high-level language source code to machine

(object, or executable) code.

� “Compiler”
a program that translates HLL source code to machine (object, or

executable) code.

� “Assembly”
translating from assemble language source code to machine (object,

or executable) code.

� “Assembler”
a program that translates assembly source code to machine (object,

or executable) code.

� Compilers need to know the specific target hardware

Chapter 1 15

Compilers vs. Assemblers vs. Interpreters

� Compilers and Assemblers
» translation is a separate user step
» translation is “off-line,” i.e. not at run time

� Interpreters - another way to translate source to object code
» interpretation (from source to object code) is not a separate user

step
» translation is “on-line,” i.e. at run time

Compiler,

Assembler, or

Interpreter

Source
Code

Object
Code

Chapter 1 16

Java Program Translation

� Both Compilation and
Interpretation

� Intermediate Code:
“Byte Code”
» portable low-level code
» similar to assembly

code,
but hardware
independent

» invisible to Java
programmer

� Interpreter translates from
generic byte code to
hardware-specific machine
code

Java Program Data for Java Program

Java Compiler

Byte-Code
Program

Byte-Code Interpreter

Machine-Language
Instructions

Computer Execution
of Machine-Language Instructions

Output of Java Program

Java
Virtual

Machine

Java Program Data for Java Program

Java Compiler

Byte-Code
Program

Byte-Code Interpreter

Machine-Language
Instructions

Computer Execution
of Machine-Language Instructions

Output of Java Program

Java
Virtual

Machine

Linker

Previously Compiled Helper Programs

�����������	�
����
���������
������������

Chapter 1 18

Object-Oriented Programming

� OOP
� A design and programming technique
� Some terminology:

» object - usually a person, place or thing (a noun)
» method - an action performed by an object (a verb)
» type or class - a category of similar objects (such as

automobiles)
� Objects have both data and methods
� Objects of the same class have the same data elements and

methods
� Objects send and receive messages to invoke actions

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 4

Chapter 1 19

Example of an Object Class

Data Items:
» manufacturer’s name
» model name
» year made
» color
» number of doors
» size of engine
» etc.

Methods:
» Define data items

(specify manufacturer’s
name, model, year, etc.)

» Change a data item
(color, engine, etc.)

» Display data items
» Calculate cost
» etc.

Class: automobile

Chapter 1 20

Why OOP?

� Save development time (and cost) by reusing code
» once an object class is created it can be used in

other applications

� Easier debugging
» classes can be tested independently
» reused objects have already been tested

Chapter 1 21

Design Principles of OOP

Three main design principles of Object-
Oriented Programming(OOP):

� Encapsulation
� Polymorphism
� Inheritance

Chapter 1 22

Encapsulation

� Encapsulation means to design, produce, and
describe software so that it can be easily used
without knowing the details of how it works.

� Also known as data hiding

An analogy:
� When you drive a car, you don’t have know the

details of how many cylinders the engine has or how
the gasoline and air are mixed and ignited.

� Instead you only have to know how to use the
controls.

Chapter 1 23

Polymorphism

� Polymorphism—the same word or phrase can be
mean different things in different contexts

� Analogy: in English, bank can mean side of a river or
a place to put money

� In Java, two or more classes could each have a
method called output

� Each output method would do the right thing for the
class that it was in.

� One output might display a number whereas a
different one might display a name.

Chapter 1 24

Inheritance

� Inheritance—a way of organizing classes
� Term comes from inheritance of traits like eye color,

hair color, and so on.
� Classes with properties in common can be grouped

so that their common properties are only defined
once.

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 5

Chapter 1 25

An Inheritance Hierarchy

Vehicle

Automobile Motorcycle Bus

Sedan Sports Car School BusLuxury Bus

What properties does each vehicle inherit from the types
of vehicles above it in the diagram?

Chapter 1 26

Algorithms

� Algorithm - a set of instructions (steps) for solving a
problem.
» must be precise
» must be complete

� May be in a number of different formats
» natural language (such as English)
» a specific programming language
» a diagram, such as a flow chart
» pseudocode - a mix of natural and programming

language

Chapter 1 27

Example of an Algorithm

Algorithm that determines the total cost of a list of items:

1. Write the number 0 on the blackboard.

2. Do the following for each item on the list:
Add the cost of the item to the number on the

blackboard.
Replace the old number on the board by this sum.

3. Announce that the answer is the number written on the
board

Chapter 1 28

Program Design Process

� Design, then code
� Design process

» define the problem clearly
» design objects your program needs
» develop algorithms for the methods of objects
» describe the algorithms, usually in pseudocode
» write the code
» test the code
» fix any errors and retest

Chapter 1 29

Types of Errors

� Syntax

� Run-Time

� Logic

Chapter 1 30

Syntax Errors

� a “grammatical” error
� caught by compiler (“compiler-time error”)
� automatically found, usually the easiest to fix
� cannot run code until all syntax errors are fixed
� error message may be misleading

Example:
Misspelling a command, for example “rturn” instead
of “return”

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 6

Chapter 1 31

Run-Time Errors

� An execution error (during run-time)
� Not always so easy to fix
� Error message may or may not be helpful

Example:
Division by zero - if your program attempts to divide
by zero it automatically terminates and prints an error
message.

Chapter 1 32

Logic Errors

Just because it compiles and runs without getting an
error message does not mean the code is correct!

� An error in the design (the algorithm) or its implementation
» code compiles without errors
» no run-time error messages
» but incorrect action or data occurs during execution

� Generally the most difficult to find and fix
� Need to be alert and test thoroughly

» think about test cases and predict results before executing
the code

Chapter 1 33

Logic Error Examples

� Algorithm Error:
» averageOfFiveScores = SumOfScores/2

(should divide by 5)

� Implementation Error:
» typed in wrong symbol in source code -
sum = a - b;
(should be sum = a + b;)

Chapter 1 34

Finally! Now, a taste of Java!

History
� 1991 - James Gosling, Sun Microsystems, Inc.Originally

» originally a language for programming home appliances
� later (1994) used for World Wide Web applications (since

byte code can be downloaded and run without compiling it)
� eventually used as a general-purpose programming

language (for the same reason as above plus it is object-
oriented)

� Why the name “Java”? Not sure - it may just be a name
that came during a coffee break and it had not been
copyrighted, yet.

Chapter 1 35

Applets vs. Java Applications

� Applets
» Java programs intended to be downloaded via the WWW

and run immediately
» “little applications”
» requires a web browser

� Applications
» Java programs intended to be installed then run
» often larger applications

� Slightly different programming for each, but both are
easy to do

Chapter 1 36

public class FirstProgram

{

public static void main(String[] args)

{

System.out.println("Hello out there.");

System.out.println("Want to talk some more?");

System.out.println("Answer y for yes or n for no.");

char answerLetter;

answerLetter = SavitchIn.readLineNonwhiteChar();

if (answerLetter == 'y')

System.out.println("Nice weather we are having.");

System.out.println("Good-bye.");

System.out.println("Press enter key to end...");

String junk;

junk = SavitchIn.readLine();

}

}

A Sample Java Program

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 7

Chapter 1 37

Explanation of Code ...

� Code to begin the program (to be explained later):

public class FirstProgram

{

public static void main(String[] args)

{

� Java applications all have similar code at the
beginning
» The name of the class differs from one program to another.
» Other information about the class might also be included on

the first line.

Chapter 1 38

Explanation of Code ...

� Code to display a text string:
System.out.println("Hello out there.");

System.out.println("Want to talk some more?");

System.out.println("Answer y for yes or n for no.");

» Note the “dot” operator
» System.out is an object
» println is a method that it carries out
» double-quoted text inside the parentheses is an argument to the

method
» general syntax: Object_Name.Method_Name(Arguments)

Chapter 1 39

… Explanation of Code ...

� Code to create a variable named answerLetter to
contain a single character of data:
char answerLetter;

� This variable is used to store the user’s response.

Chapter 1 40

… Explanation of Code ...

� Read a character typed in from the keyboard and store it in
the variable answerLetter:
answerLetter =
SavitchIn.readLineNonwhiteChar();

» SavitchIn is a class used for obtaining input from the
keyboard

» readLineNonwhiteChar() is a method that reads a
single, non-blank character from the keyboard and
discards any remaining characters on the line.

» the equal sign is not the same as in math; it means
“assign the value on the right to the variable on the left;”
in this case, store the value read from the keyboard into
the variable answerLetter

Chapter 1 41

… Explanation of Code ...

Question: If “=“ means “assign the value of the
expression on the right to the variable on the left,”
how do we indicate “equals”?

Answer: use a double equals (“==“)

Example: check to see if the character entered is ‘y’:
if (answerLetter == 'y')

» the value inside the parentheses will be True if the
letter ‘y’ was typed in, otherwise it will be False (if
any other letter was typed in)

Chapter 1 42

… Explanation of Code ...

� Code to display the line “Nice weather we are having.” if the user
entered the character ‘y’:
if (answerLetter == 'y')

System.out.println("Nice weather we are
having.");

» Note that the line will not be printed if any letter other than ‘y’ is
entered.

� Unconditionally display the line “Good-bye.”:
System.out.println("Good-bye.");

» only the previous System.out.println is conditionally printed,
depending on the value entered; the next instruction is executed
regardless of the value entered.

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 8

Chapter 1 43

… Explanation of Code

� Code to prevent the display from scrolling off the screen before
you can read it:

System.out.println("Press enter key to end
program.");

String junk;

junk = SavitchIn.readLine();

» junk is a variable that can contain a string of characters.
» readLine() is a method to read in an entire line of text.
» The program halts until a character is entered.
» Any character entered will make the program continue.
» The character entered is assigned to the variable junk, but

is ignored (it is not used).
» There are no more lines of code, so the program terminates.

Chapter 1 44

Syntax Rules for Identifiers

Identifier - the name of something (e.g. a variable, object, or method)
used in a Java program.

Identifiers:
» cannot use reserved words (e.g. “if,” “for”, etc.) (see App. 1)
» must contain only letters, digits, and the underscore character, _.
» cannot have a digit for the first character.

– $ is allowed but has special meaning, so do not use it.
» have no official length limit (there is always a finite limit, but it is

very large and big enough for reasonable names) .
» are case sensitive!

– junk, JUNK, and Junk are three valid and different identifiers,
so be sure to be careful in your typing!

» Note that no spaces or dots are allowed.

Chapter 1 45

Good Programming Practice:
Identifier Naming Conventions

� Always use meaningful names, e.g.
finalExamScore, instead of something like x, or
even just score.

� Use only letters and digits.
� Capitalize interior words in multi-word names, e.g.
answerLetter.

� Names of classes start with an uppercase letter.
» every program in Java is a class as well as a program.

� Names of variables, objects, and methods start with a
lowercase letter.

Chapter 1 46

Compiling a Java Program

Assuming the java compiler is already set up and all the
files are in the same folder (subdirectory):

� Each class used in a program should be in a separate file
� The name of the file should be the same as the class

except with “.java” added to it
� First compile each class definition used in the program

» e.g. SavitchIn in the sample program (Display 1.4, page 18)
» for Sun Microsystems’ JDK (Java Development Kit), type
javac SavitchIn.java

» a byte-code file is created with the name SavitchIn.class

� Next compile the program file:
» javac <file>.java (which creates <file>.class)

Chapter 1 47

Running a Java Program

� Only the class with public static void
main(String[] args)can be run
» the critical word to look for is main

� For Sun Microsystems’ JDK (Java Development Kit), type
java <file>

» <file> is the same name used in the original source
file <file>.java

» use just <file>; do not use <file>.java or
<file>.class

� Note that you compile in a separate step and
invoke the Java interpreter and linker when you run the
program.

Chapter 1 48

Summary
Part 1

� A computer’s main memory holds both the program
that is currently running and its data.

� Main memory is a series of numbered locations, each
one containing a single byte.

� Auxiliary memory is for more or less permanent
storage.

� A compiler is a program that translates a high-level
language, like java, into a lower level format (“byte-
code” for java).

� Actual translation of Java byte-code to the
hardware’s specific machine code occurs at run time
(it is interpreted).

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 1Intro. & a Taste of Java

9/15/2004 9

Chapter 1 49

Summary
Part 2

� An algorithm is a set of instructions for solving a
problem (it must be complete and precise).

� An object is something that has both data and actions
(methods) associated with it.

� A class defines a type of object; all objects of the same
class have the same methods.

� Three OOP design principles are encapsulation,
polymorphism, and inheritance.

� In a java program, a method invocation has the general
form Object_Name.Method_Name(Arguments)

