
Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 1

Chapter 2 1

Chapter 2

� Primitive Data types
� Strings: a class
� Assignment
� Expressions
� Keyboard and Screen I/O
� Documentation & Style

Primitive Types and Simple I/O

Chapter 2 2

What is a program variable?

� A named location to store data
» a container for data

� Variables can hold only one type of data
» numbers (integers, floating point (real), cardinals)
» characters
» boolean (true/false)

(Note: Strings are not variables, but objects
more on this later.)

Chapter 2 3

Creating (Declaring) Variables

� All program variables must be declared before using them

� A variable declaration associates a name with a storage location
in memory and specifies the type of data it will store:

datatype Variable_1, Variable_2, ...;

� Example: create three (3) integer variables to store the number
of: baskets, eggs per basket, and total number of eggs:

int numberOfBaskets, eggsPerBasket, totalEggs;

Chapter 2 4

Assigning Values to Variables

� The assignment operator: “=“ (the “equals" sign)
» not the same as in algebra (that is the "==" operator)

� It means:
“assign the value of the expression on the RHS to
the variable on the LHS.” (RHS-right hand side)

� Variable can be on both sides of the equals sign, but
only the left side obtains the assignment:
int count = 10;// initialize counter to ten

count = count - 1;// decrement counter

» value of count at the end: 10 - 1 = 9

Chapter 2 5

Assigning Initial Values to Variables

� Initial values may or may not be assigned when variables are
declared (if assigned, then the variables is initialised):

//These are not initialized when declared

//and have unknown values

int totalEggs, numberOfBaskets, eggsPerBasket;

//These are initialized to 0 when declared

int totalEggs = 0;

int numberOfBaskets = 0;

int eggsPerBasket = 0;

� Tip: it is good programming practice to always initialise vars.

Chapter 2 6

Changing the Value of a Variable

� value of variable is changed (assigned a different
value) somewhere in the program

� may be calculated from other values:
totalEggs = numberOfBaskets * eggsPerBasket;

� or read from keyboard input:
totalEggs = SavitchIn.readLineInt();

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 2

Chapter 2 7

Variable Names: Identifiers

Rules
- these must be obeyed

� all Java identifiers follow the
same rules (not only vars.)

� must not start with a digit
� must contain only numbers,

letters, underscore (_) and $
(avoid using $, it is reserved
for special purposes)

� names are case-sensitive
(ThisName and thisName
refer to different identifiers)

Good Programming Practice
- these should be obeyed

� always use meaningful names from
the problem domain (for example,
eggsPerBasket instead of n,
which is meaningless, or count,
which is not meaningful enough)

� start variable names in lower case
(classes, objects with uppercase)

� capitalise interior words (use
eggsPerBasket instead of
eggsperbasket)

� avoid using $ since it is reserved for
special purposes

Chapter 2 8

Two Main Kinds of Types in Java

primitive data types
� the simplest types
� cannot decompose into other

types
� values only, no methods
� Examples:

int - integer
double - floating point (real)
char - character

class types
� more complex
� composed of other types

(primitive or class types)
� both data and methods
� Examples:

SavitchIn
String

Chapter 2 9

Primitive Data Types

Type Name

Kind of Value

Memory Used

Size Range

byte integer 1 byte -128 to 127

short integer 2 bytes -32768 to 32767

int integer 4 bytes -2,147,483,648 to 2,147,483,647

long integer 8 bytes -9,223,372,036,854,775,808 to
9,223,374,036,854,775,808

float floating point 4 bytes +/- 3.4028… x 10+38 to
+/- 1.4023… x 0-45

double floating point 8 bytes +/- 1.767… x 10+308 to
+/- 4.940… x 0-324

char single character (Unicode) 2 bytes all Unicode characters

boolean true or false 1 bit not applicable

Chapter 2 10

Which Ones to Know for Now

� int

» just whole numbers
» may be positive or negative
» no decimal point

� char

» just a single character
» uses single quotes
» for example
char letterGrade =
`A`;

� double
» real numbers, both

positive and negative
» has a decimal point

(fractional part)
» two formats

– number with decimal
point, e.g. 514.061

– e (or scientific, or
floating-point)
notation, e.g. 5.14061
e2, which means
5.14061 x 102

Display in text is for reference; for now stick to these simple primitive types:

Chapter 2 11

Specialized Assignment Operators

� A shorthand notation for performing an operation on and
assigning a new value to a variable

� General form: var <op>= expression;

» equivalent to: var = var <op> (expression);

» <op> is +, -, *, /, or % (<op> - "operator")

� Examples:
amount += 5; //amount = amount + 5;

amount *= 1 + interestRate;

//amount = amount * (1 + interestRate);

� note that the RHS is treated as a unit (put parentheses around
the entire expression)

Chapter 2 12

Returned Value: Result of RHS Expression

� Expressions return values: the number produced by an
expression is “returned”
int numberOfBaskets, eggsPerBasket, totalEggs;

numberOfBaskets = 5;

eggsPerBasket = 8;

totalEggs = numberOfBaskets * eggsPerBasket;

» in the last line numberOfBaskets returns the value 5 and
eggsPerBasket returns the value 8

» numberOfBaskets * eggsPerBasket is an expression that
returns the integer value 40

� similarly, methods return values
SavitchIn.readLine(); is a method that returns a string read

from the keyboard

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 3

Chapter 2 13

Casting: changing the data type of the
returned value

� Casting means to change the data type of a value, but not
change the original value

� You cannot put a value of one type in a variable of a different
type unless you convert it to match the type of the variable

� Casting only changes the type of the returned value (the single
instance where the cast is done), not the type of the variable

� Example:
double x;

int n = 5;

x = n; // implicit cast of int to double

� Since n is an integer and x is a double, the value returned by n
must be converted to type double before it is assigned to x

Chapter 2 14

Implicit Casting

� Casting is done implicitly (automatically) when a “lower” type is
assigned to a “higher” type

� The data type hierarchy (from lowest to highest):
byte --> short --> int --> long --> float --> double

� For example:
double x;

int n = 5;

x = n;

» value returned by n is cast to a double, then assigned to x
» x contains 5.000… (as accurately as it can be encoded as a

floating point number)
» called implicit casting because it is done automatically
» the data type of the variable n is unchanged—is still int

Chapter 2 15

Data Types in an Expression:
More Implicit Casting

� Some expressions have a mix of data types
� All values are automatically advanced (implicitly cast) to the

highest level before the calculation
� Example:

double a;
int n = 2;
float x = 5.1;
double y = 1.33;
a = (n * x)/y;

» n and x are automatically cast to type double before
performing the multiplication and division

Chapter 2 16

Explicit Casting

� Explicit casting changes the data type of the value for a single
use of the variable

� Precede the variable name of the new data type in parentheses:
(<data type>) variableName

» the type is changed to <data type> only for the single use of
the returned value where it is cast

� Example:
int n;

double x = 2.0;

n = (int)x

» the value of x is converted from double to int before
assigning the value to n

Chapter 2 17

Explicit casting is required to assign a
higher type to a lower

� ILLEGAL: Implicit casting to a lower data type
int n;

double x = 2.1;

n = x; //illegal in java

» illegal since x is double, n is an int, and double is a higher
data type than int

� LEGAL: Explicit casting to a lower data type int n;
double x = 2.1;

n = (int)x; //legal in java

� cam always use an explicit cast where an implicit one is done
automatically, but it is not necessary

Chapter 2 18

Truncation: Casting a double to an int

� Casting a double to integer does not round; it truncates
» truncation: loosing the fractional part of a real value

� Example:
int n;

double x = 2.99999;

n = (int)x; //cast required, x is truncated

» the value of n is now 2

� this behavior is useful for some calculations, as demonstrated in
Case Study: Vending Machine Change

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 4

Chapter 2 19

Truncation When Doing Integer Division

� Truncation does not occur if at least one of the values in a
division is type float or double, since all values are promoted to
the highest data type

� Truncation occurs if all the values in a division are integers

� Example:
int a = 4, b =5, c;

double x = 1.5, y;

y = b/x; //value returned by b is cast to double

//value of y is approximately 3.33333

c = b/a; //all values are ints so the division

//truncates: the value of c is 1!

Chapter 2 20

The char Data Type

� The char data type stores a single ASCII or Unicode
character
» numerically, a char can store values: 0 - 65535

� Example:
char answer = 'y';

System.out.println(answer);

» prints (displays) the letter y
» note the use of single quotes (apostrophes) when

describing a character value
– Strings are described using double quotes

Chapter 2 21

Characters as Integers

� Characters are actually stored as integers according to
a special code
» each printable character (letter, number, punctuation mark,

space, and tab) is assigned a different integer code
» the codes are different for upper and lower case
» for example 97 may be the integer value for ‘a’ and 65 for ‘A’

� ASCII (Appendix 3) and Unicode are common character
codes

� Unicode includes all the ASCII codes plus additional
ones for languages with an alphabet other than English

� Java uses the Unicode character set

Chapter 2 22

Casting a char to an int

� Casting a char value to int produces the ASCII/Unicode value
� For example, what would the following display?

char answer = 'y';

System.out.println(answer);

System.out.println((int)answer);

� Answer: the letter ‘y’ on one line followed by the ASCII code for
‘y’ (lower case) on the next line:
y
89

Chapter 2 23

GOTCHA:
Imprecision of Floating Point Numbers

� Computers store numbers in variables that are defined by a
fixed number of bits, so real (floating point, fractional) values
can not be encoded precisely,
» an infinite number of bits would be required to precisely

represent any real number
� Example, if a computer can represent up to 10 decimal digits,

the number 2.5 may be stored as 2.499999999 if that is the
closest it can come to 2.5

� But since Integers have no fractional values, the are encoded
precisely,
» if 2 is assigned to an int variable, the value is precisely 2

� Knowing which data type to use where is important in
programming (as will been seen later in the course)

Chapter 2 24

The Modulo (modulus) Operator: a%b

� Used with integer types
� Returns the remainder of the division of b by a
� For example:

int a = 57; b = 16, c;

c = a%b;

» c now has the value 9, the remainder when
57 is divided by 16

� A very useful operation: see Case Study: Vending
Machine Change

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 5

Chapter 2 25

Vending Machine Change

int amount, originalAmount,

quarters, dimes, nickels, pennies;

. . . // code that gets amount from user not shown

originalAmount = amount;

quarters = amount/25;

amount = amount%25;

dimes = amount/10;

amount = amount%10;

nickels = amount/5;

amount = amount%5;

pennies = amount;

If amount is 90 then
there 80/25 will be 3, so
there are three quarters.

If amount is 90 then the
remainder of 80/25 will be 15,
so 15 cents change is made up
of other coins.

Excerpt from the ChangeMaker.java program:

Chapter 2 26

Arithmetic Operator Precedence and
Parentheses

� Java expressions follow evaluation rules similar to
real-number algebra

� Parentheses are used to force precedence

� Do not clutter expressions with parentheses when the
precedence is correct and obvious
» although parentheses can sometimes be used to help

describe the order of evaluation to another programmer

Chapter 2 27

Examples of Expressions

Ordinary Math
Expression

Java Expression
(preferred form)

Java Fully
Parenthesized
Expression

rate2 + delta rate*rate + delta (rate*rate) + delta

2(salary + bonus) 2 * (salary + bonus) 2 * (salary + bonus)

3mass time
1

+
 1/(time + 3 * mass) 1/(time + (3 * mass))

9v t
7 - a

+
 (a - 7) / (t + 9 * v) (a - 7) / (t +(9 * v))

Chapter 2 28

Increment and Decrement Operators

� Shorthand notation for common arithmetic operations on variables
» used primarily for counting

� Counters may "count" up(+) or down(-), but only with integer variables
� A counter can be incremented (or decremented) before or after using

its current value; example,
int count;

…

++count :preincrement count: count = count + 1 before using it
count++ :postincrement count: count = count + 1 after using it
--count :predecrement count: count = count -1 before using it
count-- :postdecrement count: count = count -1 after using it

Chapter 2 29

Increment and Decrement Operator
Examples

code segment,
int n = 3;

int m = 4;

int result;

What are the values of m and result after each statement?
(a) result = n * ++m; //preincrement m

(b) result = n * m++; //postincrement m

(c) result = n * --m; //predecrement m

(d) result = n * m--; //postdecrement m

Chapter 2 30

Answers to Increment/Decrement
Operator Questions

(a) 1) m = m + 1;//m = 4 + 1 = 5
2) result = n * m;//result = 3 * 5 = 15

(b) 1) result = n * m;//result = 3 * 4 = 12
2) m = m + 1;//m = 4 + 1 = 5

(c) 1) m = m - 1;//m = 4 - 1 = 3

2) result = n * m;//result = 3 * 3 = 9

(b) 1) result = n * m;//result = 3 * 4 = 12
2) m = m - 1;//m = 4 - 1 = 3

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 6

Chapter 2 31

The String Class

� A "string" is a sequence of characters
� The String class is used to store strings
� The String class has methods to operate on strings

� String constant: one or more characters in double quotes
� Examples:

char charVariable = 'a'; //single quotes

String stringVariable = "a"; //double quotes

String sentence = "Hello, world";

Chapter 2 32

String Variables

� Declare a String variable:
String greeting;

� Assign a value to the variable
greeting = "Hello!";

� Use the variable as a String argument in a method:
System.out.println(greeting);

» causes the string Hello! to be displayed on the
screen

Chapter 2 33

Indexing Characters within a String

� The index of a character within a string is an integer starting at 0
for the first character and gives the position of the character

� The charAt(Position)method returns the char at the
specified position

� substring(Start, End)method returns the string from
position Start to position End

� For example:
String greeting = "Hi, there!";

greeting.charAt(0)returns H

greeting.charAt(2)returns ,

greeting.substring(4,6)returns the

H i , t h e r e !

0 1 2 3 4 5 6 7 8 9

Chapter 2 34

Concatenating (Appending) Strings

Stringing together strings, using the "+" operator for Strings:
String name = "Mondo";

String greeting = "Hi, there!";

System.out.println(greeting + name + "Welcome");

causes the following to display on the screen:
>Hi, there!MondoWelcome

» Note that you have to remember to include spaces if you want it to
look right:

System.out.println(greeting+" "+name+" Welcome");

» causes the following to display on the screen:
>Hi, there! Mondo Welcome

Chapter 2 35

Escape Characters

� How do you print characters that have special meaning?
� For example, how do you print the following string?

The word "hard"

� Would this work?
System.out.println("The word "hard"");

» it would give a compiler error, since the code describes
string The word between the first set of double quotes and
is confused by what comes after

� The backslash character (\) is used to escape the special
meaning of the internal double quotes,
System.out.println("The word \"hard\"");

Chapter 2 36

More Escape Characters

Use the following escape characters to include the
character listed in a quoted string:

\" double quote
\' single quote
\\ backslash
\n new line, go to the beginning of the next line
\r carriage return, go to the start of the current line
\t tab, white space up to the next standard tab stop

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 7

Chapter 2 37

One more thing about screen output:
how to get or avoid a new line

� Sometimes you want to print part of a line and not go to the next
line when you print again

� Two methods, one that goes to a new line and one that does not
System.out.println(…); //ends with a new line

System.out.print(…); //stays on the same line

� Example,
System.out.print("This will all ");

System.out.println("appear on one line");

� System.out.print() will work similar to the “+” operator:
System.out.println("This will all "

+ "appear on one line, too");

Chapter 2 38

Program I/O

� I/O - Input/Output
� Keyboard is the normal input device
� Screen is the normal output device
� Classes are used for I/O
� They are generally add-on classes (not actually part

of Java)
� Some I/O classes are always provided with Java,

others are not

Chapter 2 39

I/O Classes

� We have been using an output method from a class that
automatically comes with Java:
System.out.println()

� But Java does not automatically have an input class, so one must
be added
» SavitchIn is a class specially written to do keyboard input

� SavitchIn.java is provided with the text - see Appendix 2
� Examples of SavitchIn methods for keyboard input:

readLineInt()
readLineDouble()
readLineNonwhiteChar()

� Gotcha: remember Java is case sensitive, for example
readLineNonWhiteChar()will not work

Chapter 2 40

Input Example from Vending Machine
Change Program

int amount, originalAmount,

quarters, dimes, nickels, pennies;

System.out.println("Enter a whole number...");

System.out.println("I will output ... coins");

System.out.println("that equals that amount ...");

amount = SavitchIn.readLineInt();

originalAmount = amount;

Excerpt from the ChangeMaker.java program:

Lets the user type
in an integer and
stores the number
in amount.

Prompts so that
user knows what
they need to type.

Chapter 2 41

Keyboard Input Gotchas

readLine variation
� reads a whole line
� asks the user to reenter if

it is not the right format
� Try to use these
� Examples:
readLineInt()
readLineDouble()

read variation
� reads just the number
� aborts the program if it is

not the right format
� Avoid using these
� Examples:
readInt()
readDouble()

Note the two variations for reading each type of number

Chapter 2 42

A little practical matter:
If the screen goes away too quickly …

If the output (screen display) of your programs does not stay on the
screen, use this code,

System.out.println(“Press any key to end program.”)

String junk;

junk = SavitchIn.readLine();

� The display stops until the user presses ENTER
� Whatever the user types is stored in the string junk but is never used

� Note: As seen in lab using JCreator (or another Java IDE), at the
termination of a program, the IDE pauses the screen anyway

Java: An Introduction to Computer Science and Programming, Walter Savitch Ch. 2 Primitive Types and Strings

9/15/2004 8

Chapter 2 43

Documentation and Style

� Use meaningful names for variables, classes, etc.
� Use indentation and line spacing as shown in the

examples in the text
� Always include a “prologue” (an brief explanation of

the program at the beginning of the file)
� Use all lower case for variables, except capitalize

internal words (eggsPerBasket)
� Use all upper case for variables that have a constant

value, PI for the value of pi (3.14159…)
(see text for more examples)

Chapter 2 44

Named Constants

� Named constant—using a name instead of a value
� Example: use MORTGAGE_INTEREST_RATE instead

of 8.5
� Advantages of using named constants,

» easier to understand program, reader can tell how
the value is being used

» easier to modify program, value can be changed
in one place (the definition) instead of being
changed everywhere in the program.

» avoids mistakes of changing a similar value that is
used for a different purpose

Chapter 2 45

Defining Named Constants

public—no restrictions on where name can be used
static—required (explained later)
final—program is not allowed to change the value
� the remainder of the definition is similar to a variable

declaration and gives the type, name, and initial
value.

� such a declaration is provided at the beginning of the
program file and is not inside the main method
definition

public static final double PI = 3.14159;

Chapter 2 46

Comments

� Comments—program text ignored by the compiler
� Does not change what the program does, but used to

explain the functionality and steps in a program
� Always include meaningful and useful comments
� Goal is to comment the non-obvious statements
� Assume a reasonably knowledgeable reader
� // single-line comments (everything after is ignored)
� /* … */ multi-line comments

Chapter 2 47

Summary

� Variables hold values and have a type
» data type of a Java variable is either a primitive or a class
» common primitive types include int, double, and char
» [so far] a common class type is String
» before being used, variables must declared

� Parentheses in arithmetic expressions ensure correct evaluation
� Input/Output

» Output: use System.out.print()/println() methods
» use SavitchIn methods for keyboard input

– SavitchIn is not part of standard Java

Chapter 2 48

Summary

� Good programming practice:
» Use meaningful names for variables
» Always initialize variables
» Use variable names (in upper case) for constants
» Use comments sparingly but wisely, e.g. to explain non-

obvious code
» Prepare the program so that it looks visually attactive

– indenting, line spacing, appropriate use of comments

» Display prompts should precede any user input statements
(so that the user knows what to enter)

