
5/15/03 1

Chapter 3 1

Chapter 3

l Branching
l Loops
l exit(n) method
l Boolean data type and

logic expressions

Flow of Control – Part 1

Chapter 3 2

“Flow of Control” - control of the
execution of instructions in a program

1. Sequence - execute next instruction

2. Selection - conditional selection of next
– if, switch/case, try/catch

3. Repetition - repeat (loop) code block until a particular
condition is met; either,
– proceed to next (or first) instruction in block
– jump back to beginning (first instruction) of block
– exit block, continue with the next instruction after block

l Selection & Repetition are called Branching Controls
(there may be more than one path)

Chapter 3 3

Java Flow Control Statements

Sequence
» default; Java automatically executes the next

instruction

Branching: Selection
» if, if-else [and if-else if]
» switch/case

Branching: Repetition (Looping)
» while, for ß "pre-check" loops

» do-while ß "post-check" loop

Chapter 3 4

Definition of Boolean Values

l Branching
» decisions are based on the outcome of a boolean

expression that evaluates in either true or false

» boolean expression also called a "condition"

l All branching controls utilise boolean expressions,
» if (boolean expr.)
» while (boolean expr.), for (__, boolean expr., __)

» do { } while (boolean expr.)
» switch/case is special because is uses an

implicit boolean expression (discussed later)

Chapter 3 5

Comparison Operators
(each results in a boolean value)

In Math Name In Java Java Examples
= equal to == balance == 0

answer = 'y'
≠ not equal to != income != tax

answer != 'y'
> greater than

> income > outgo

≥ greater than or equal to

>= points >= 60

< less than

< pressure < max

≤ less than or equal to <= income <= outgo

Chapter 3 6

Variables and Objects: memory!

l a variable points directly to its data,
» the variable directly stores its data
» this is called a "direct reference" to the variable data

l an object identifier is a "reference variable" that stores a
memory address as its data,
» the memory address is the location where the object's

data is stored (as variable values and methods)
» this is called an "indirect reference" to the object data

l example: int size=10; String name="Bob";

10

size
&f22c

name 'B' 'o' 'b'
.equals()
.length()
.charAt()

&f22c

5/15/03 2

Chapter 3 7

Object Comparisons

l == does not work as expected for objects!!
» unlike variables, objects store memory addresses
» in using “==“ to test if objects are "equal to each other,"

the test actually performed is,
– if "the memory addresses stored by the object reference

variables are the same" (is this ever true?!)
» note: all objects reference variables (regardless of the

class they are instances of) have the same data type;
and so can be compared together (but is this useful?)

l Most classes/objects have a method to test for "data
equality" rather than "memory address equality" to
test if the objects share similar data

Chapter 3 8

String Comparisons: special method

l for String objects, use their .equals() method,

String s1 = “Mondo”, s2;
s2 = SavitchIn.readLine();
if (s1.equals(s2))

System.out.print("User typed 'Mondo');
else

System.out.print("User did not type..");
» s1.equals(s2) is true both Strings have the same

data; false otherwise

l .equals() is case sensitive, so to compare meaning
an ignore case, use .equalsIgnoreCase()
» how do you think .equalsIgnoreCase() works?

Chapter 3 9

Compound Boolean Expressions

l To build longer, more complex, boolean expressions,
[boolean LHS] logic operator [boolean RHS]

» && or & (AND) – both LHS and RHS must be true
» || or | (OR) – either LHS or RHS is true

l example: a test to see "if A is either equal to 0, or
between the values of B and C (equal to neither)",

(A == 0) || (A < B && B < C)

l parentheses are sometime not required but always
added for clarity (along with a comment!!)
» see text (and later slides) for Precedence rules

» single & and | are used to avoid short-circuit evaluation
and force complete evaluation of a boolean expression

Chapter 3 10

if statement

l "do the next statement if test is true or skip it if false"

l Syntax:
if (boolean_expression)

action if true; //only if true
next action; //always executed

» indentation for program readability
if (eggsPerBasket < 12) // if less than a dozen eggs

System.out.println("Less than a dozen eggs per basket");

totalEggs = numberOfEggs * eggsPerBasket;
System.out.println("A total of "+ totalEggs + " eggs.");

Chapter 3 11

More than 1 statement:
Compound Statements:

l although the if can perform only a single statement,
statements can be grouped together and treated as
one

l these are called compound statements, code blocks, or
just a blocks, and are defined by enclosing the
statements in curly brackets (like the main() method)

l example:
if (eggsPerBasket < 12) // if less than 12 eggs
{

System.out.println(“Less than a dozen ...”);
costPerBasket = 1.1 * costPerBasket;

} //end of if statement

Chapter 3 12

Two-way Selection: if-else

l Select either one of two options,
» either perform the true statement block or

the false statement block

l syntax:
if (Boolean_Expression) // expression is true
{

statement block if true
}
else // assumption is that expression is false
{

statement block if false
}

statements outside of/after if; always executed

5/15/03 3

Chapter 3 13

if-else Examples

l example with single-statement blocks:
if(time < limit) // time less than deadline

System.out.println(“You made it.”);
else

System.out.println(“Missed deadline.”);

l example with compound statements:
if(time < limit) // time less than deadline
{

System.out.println(“You made it.”);
bonus = 100; // sweet!!

}
else // time is >= than deadline
{

System.out.println(“Missed deadline.”);
bonus = 0; // doh!!

} // end of if
Chapter 3 14

Multi-way if
if-else if

l an extended form of "two-way if"
(also called a cascading if-else),
if (score >= 90 // scr >= 90

grade = ‘A’);
else if (score >= 80) // 80<=scr<90

grade = ‘B’;
else if (score >= 70) // 70<=scr<80

grade = ‘C’;
else if (score >= 60) // 60<=scr<70

grade = ‘D’;
else // scr<60

grade = ‘E’;

» to see how if works, match up each else to an if

Chapter 3 15

Multibranch selection:
switch

l an other branching technique, similar to multi-way if
l comments on switch/case

» the controlling_expression must be an integer data type:
byte, char, short, int, or long

» controlling_expression and case_label have same type

» when a break statement is encountered, control
immediately goes to the first statement after the
switch statement ,
– if no break is encountered to program proceeds directly

to the next instruction in the following case statement
– the switch/case statement is very old (written for

C/C++) but is very efficient after being compiled
Chapter 3 16

switch Example

switch (seatLocationCode)
{
case 1:

System.out.println(“Orchestra”);
price = 40.00;
break;

case 2:
System.out.println(“Mezzanine”);
price = 30.00;
break;

case 3:
System.out.println(“Balcony”);
price = 15.00;
break;

default:
System.out.println(“Unknown seat");
break; // last statement; optional

}// end of switch()

