
5/19/03 1

Chapter 3 1

Chapter 3

l Branching
l Loops
l exit(n) method
l Boolean data type and

logic expressions

Flow of Control – Part 2

Chapter 3 2

Repetition: Loops

l Structure of a general “loop”:
• initialisation code (counting variable(s))
• body of loop
• loop continuation or termination condition

l Types of “loops”
» counting loops
» sentinel-controlled loops (“flag” controlled)
» infinite loops

l Several programming statement variations
» while & for (perform at least zero loops)
» do-while (perform at least one loop)

Chapter 3 3

while

l Syntax:
while(boolean_expression)
{

//body of loop
First_Statement;
...
Last_Statement;

}

l initialisation statements usually precede the loop
l while the bool_expr is true the loops continues;

when it become false, the loop ends
l while can be used as either a counting loop

or sentinel loop

Something in body of loop
should eventually cause the
boolean_expression to
become false.

Chapter 3 4

while : a counting loop example

l A loop to sum 10 numbers entered by user
int next; // next value from user
int count, total; // loop counter & sum

//init loop
count = 1; // init. Count to 1 (1st)
total = 0; // init. Total to zero (empty)

while (count <= 10) //count from 1 to 10
{ //get next value, add to total (sum)

next = SavitchIn.readLineInt();
total = total + next; // summation
count++; //incr. loop counter

} // end of loop

Chapter 3 5

while:
a sentinel controlled loop example

l A loop to sum positive integers entered by the user
l next holds the user's input, sentinal
l loop terminates when a negative number is input

int next = 0; // user input
int total = 0; // summation

// loop while next is not zero or neg.
while (next >= 0)
{
total += next; // sum
next = SavitchIn.readLineInt();

}// end of loop

l why is the summation before the data input?
Chapter 3 6

while: minimum of zero iterations

l while is a "pre-check" loop

l it checks whether to loop or not before
performing the loop body—it may never loop!

int next = 0, int total = 0;
// initial read, called "priming next"

next = SavitchIn.readLineInt();

while (next >= 0) // loop while next >= 0
{

total += next;
next = SavitchIn.readLineInt();

}// end of loop

l if the first user value is negative—no loop.

5/19/03 2

Chapter 3 7

do-while Loop

l syntax
do
{ //body of loop

First_Statement;
...
Last_Statement;

} while(Boolean_Expression);

l test for loop is after body so the loop must
execute at least once

l may be either counting or sentinel loop
» good choice for sentinel loop

Something in body of loop
should eventually cause
Boolean_Expression to
be false.

Chapter 3 8

do-while Example

int count = 1;
int number = 10;
do //display 1 thru 10 on one line
{

System.out.print(count + “, “);
count++;

}
while (count <= number); // end of loop

l why is System.out.print() used rather than
System.out.println()?

Chapter 3 9

for Loop

l Excellent choice for counting loop!
l syntax includes: initialisation, test, and incr.
l syntax:

for (decl & init; bool_expr; incr/decr.)
{

body;
}// end of for

l note: the incr/decr. happens after the body of
the loop is executed—for is similar to while

Chapter 3 10

for Example

l Count down from 9 to 0,

decl & init test decr.
for (int count=9; count>=0; count--)
{

System.out.print("T = " + count);
System.out.println(" and counting");

}

System.out.println("Blast off!");

Chapter 3 11

Comments on Loops

l common loop errors:
» unintended infinite loops

» "off-by-one errors" in counting loops

l when a loop terminating condition is not met—

result: infinite loop ∞∞
» CLI programs in an infinite loop--press ^C (Control -C)

l loops should always be tested thoroughly
» especially at the boundaries of the loop test,

to check for off -by-one and other possible errors

Chapter 3 12

The Type boolean

l only two values: true and false
l Boolean variables can,

» hold the result of a logical expression
» be used as expression in if, while, do_while, for

– in this case, storing the result of an expression and
using the result more than once—advantage?

if (systemsAreOK)
System.out.println(“Initiate launch sequence.”);

else
System.out.println(“Abort launching sequence”);

5/19/03 3

Chapter 3 13

Truth Tables for boolean Operators

Value of A Value of B A && B

true true true

true false false

false true false

false false false

Value of A Value of B A || B

true true true

true false true

false true true

false false false

Value of A !A

true false

false true

&&, & (and) ||, | (or)

! (not)

Chapter 3 14

Precedence Rules

Highest Precedence
» 1st : unary operators: +, -, ++, --, and !
» 2nd: binary arithmetic operators: *, /, %

» 3rd : binary arithmetic operators: +, -
» 4th : boolean operators: <, >, =<, >=

» 5th : boolean operators: ==, !=
» 6th : boolean operator: & (full eval. and)

» 7th : boolean operator: | (full eval. and)
» 8th : boolean operator: && (short eval. and)

» 9th : boolean operator: || (short eval. and)

Lowest Precedence

Chapter 3 15

l Short-circuit evaluation:
» "evaluate as much of an expression as necessary"

l example:

l if (assign>0) is false, the complete expression will
also be false, regardless of the rest

l with && Java will not evaluate the full expression
l short-circuit eval. would prevent a "divide-by-zero"

exception when assign = 0.

Short-Circuit Evaluation

if ((assign > 0) && ((total/assign) > 60))

System.out.println(“Good work”);

else

System.out.println(“Work harder.”);

Chapter 3 16

The exit Method

l if you have a program situation where it is pointless
to continue execution you can terminate the program
with the exit(n) method

l n is often used to identify to the OS if the program
ended normally or abnormally

l n is conventionally 0 for "normal termination" and a
non-zero for abnormal termination
» sometimes a non-zero indicates a special circumstance

Chapter 3 17

exit Method Example

char userIn=' ';
System.out.println("e to exit, c to cont.");

userIn = SavitchInReadLineChar();

if (userIn == 'e')
System.exit(0);

else if (userIn == 'c')
{

//statements to do work
}
else
{

System.out.println("Invalid entry");
//statements to something appropriate

}
Chapter 3 18

Summary

l selection: if, if-else, if-else if, and switch

l repetition (loop): while, do-while, and for
l loops are usually,

» counting loops (loop controlled by an inc./dec . value)
» sentinel controlled, terminating once a given value is seen

l any loop can be written with any of the three loop
statements, but
» while, do-while are good choices for sentinel loops

» for is a good choice for counting loops

5/19/03 4

Chapter 3 19

Summary

l unintended "infinite loops" can usually be terminated
by entering ^C (control-C) at the prompt

l the most common loop errors are unintended infinite
loops and off-by-one errors in counting loops

l branching and loops are controlled by boolean
expressions
» boolean expressions are either true or false
» boolean is a primitive data type in Java

l the System.exit(n) method terminates the running
program
» required when using GUI in your application

