
5/24/03 1

Chapter 4 1

Chapter 4 – Part 1

l Class and Method Definitions
l Parameter passing

Classes, Objects, and Methods

Chapter 4 2

Classes

l Class—the abstract definition for new objects
» similar to a template, design, or outline for 

constructing new, unique objects

» objects, properly referred to as "instances of a class"

l a class specifies the kind the attributes and methods
objects of that class contain,
» objects of a class have similar data items (attributes) 

but with different values
» objects of a class have the same actions (methods), 

but the outcomes are unique to each object

Chapter 4 3

Class as an Outline

Class Name: Automobile
Data:
amount of fuel ________
speed ________

license plate ________
Methods (actions):
increaseSpeed:
How: Press on gas pedal.

stop:
How: Press on brake pedal.

First Instantiation:
Object name: patsCar

amount of fuel: 10 gallons
speed: 55 miles per hour
license plate: “135 XJK”

Second Instantiation:
Object name: suesCar
amount of fuel: 14 gallons
speed: 0 miles per hour
license plate: “SUES CAR”

Third Instantiation:
Object name: ronsCar
amount of fuel: 2 gallons
speed: 75 miles per hour
license plate: “351 WLF”

Class 
Definition

Instantiations of 
the class def.

Chapter 4 4

Objects

l objects are named instances of a class
» similar in concept to variables, except the 

class is the object's type

» also, objects are reference variables that indirectly 
reference the data stored by the "object"

l objects have both data and actions:
» data are called attributes , actions are called methods 
» both attributes and methods are referred to as 

members of the object (belonging to the object)
– attributes are also called instance variables
– attributes can be primitives vars., or objects themselves

Chapter 4 5

Example: String Class

l String is a class
» it stores a sequence of individual characters
» its has a number of useful methods,

– .length(), .charAt(), .indexOf()

» each String object has its own data, example:

String s1="two words", s2="three nice words";

System.out.println( s1.length() );
System.out.println( s2.length() );

Chapter 4 6

Class Definition Files

l each Java class definition should be a separate file
l common file rules apply:

» filename is exactly the same as the class
» the files ends in .java and must be compiled (.class)

– .class files are not related to class definitions
» file is in the same folder as the program using the class

l some class definitions are static
» static classes usually do not have instance declarations
» variables, constants, and methods are used directly
» for example: Math and SavitchIn
» static classes are used to define utility classes



5/24/03 2

Chapter 4 7

Instantiating Objects

l Syntax:
class_Name instance_Name = new class_Name();

» note the keyword new

l ex: the textbook defines a class named SpeciesFirstTry
//instantiate a SpeciesFirstTry object

SpeciesFirstTry speciesOfTheMonth =
new SpeciesFirstTry();

» this class has a public instance variable named 
.name that is accessed via the "dot operator"

SpeciesOfTheMonth.name = "Garfield";

Chapter 4 8

The Program Class

l every Java program you have written begins with 
public class Program_Class_Name

» meaning your program is actually a class definition!
» after the program is compiled to byte code as a .class

file, the Java interpreter (virtual machine) runs the 
program by first creating an instance of the program,
– an executable object of your program class

l the implication of all this is that more than one
instance of your program can exist at one time, each 
instance with the same instructions but different data

l methods included in a program class (or static class) 
must also include the static keyboard

Chapter 4 9

Defining Methods in a Class

l rather than consider on all types of class definitions, 
we will focus on program classes

– the same ideas will be applied to all class definitions

l in a program, methods are used to,
– segment, organise, or simplify code by "hiding" sections 

of code and referring to them with a single name
– encapsulate code that is repeated at multiple locations 

in the program (to reduce the overall program length)
– create useful routines that can be used like a servant for 

other sections of the program
– define the actions of a class, without burdening another 

program with "how" the action is performed

Chapter 4 10

Methods and their Return Statements

l methods can be declared anywhere in a class, but
» placed after public member variable declarations, and 

after the main() method definition

l the purpose of any method is to accomplish an action 
and return a result
» methods are stoped, and a value returned, through the 

return statement; example,

// square_area() – return the area of a square
public int square_area(int length)
{

int areacalc = length*length;  //calc area
return (areacalc);             //return area

} // end of square_area()

method header

method body method end

Chapter 4 11

void Methods and null-Returns

l a method that returns no value, because
» it is used strictly for output (i.e., printing); or

» it returns data through a parameter (discussed later)
l a method that returns no value is called void, with 

this keyword used in the method header
– void methods can use a null-return (a return with no 

value) to end & exit the method

// display_gui() – output string to GUI dialog
public void display_gui(String outstr)
{

JOptionPane.showMessageDialog(null,outstr);
return;             // end, ** optional **

} // end of display_gui()

Chapter 4 12

The main Method

l for a program class to solve a problem (rather than 
simply provide a definition for objects) is must 
contain a specially named method: main()

l when the Java interpreter attempts to execute a 
program class, it begins with the main() method

– if this method is missing, an exception error is displayed
public class Sample_Prog
{   ...declare member variables…

public static void main(String[] args)
{

…statements that define the main method…
} // end of main()
...define other methods for the class

} //end of class Sample_Prog



5/24/03 3

Chapter 4 13

The main Method

l the main() method,
» returns no value and is therefore a void-method

– although a return; can be used to end the method
» has a single parameter: (String args[ ]),

which is data provided to the method from the OS
– the main()'s header is a standard—do not change

» is sometimes included in "non-executable" class 
definitions (such as String, SavitchIn, and Math) so 
that the class can be tested during creation
– the main() would only have a sequence of tests

Chapter 4 14

Locals, Globals, and Scope!

l "scope" – the description of where and when 
identifiers (variables, classes, objects, and methods) 
can be seen by statements

l "global" – any identifier declared outside of all 
methods and compound statements

– a "global" can be "seen" by the entire class

l "local" – any identifier declared within a method or 
compound statement block,

– a "local" can be "seen" by only its block, and blocks 
within that block

– locals do not exist (inaccessible) outside the block

Chapter 4 15

Passing Values to a Method: Parameters

l methods are provided data in two (2) ways:
» accessing the value of a global-variable or –object

– not recommended, since the same variable is always 
used this limits the flexibility of the method

» by providing the method data via its parameter list
– recommended, since it makes the method flexible and 

useful, as well as allowing for use outside the class

l methods can only return a data value through the 
return statement
» methods can also return data through pass-by-

reference parameters (more on this later)

Chapter 4 16

Pass-by-Value:
Primitive Types as Parameters

l rules for parameters,
» if defined as a primitive type the parameter is 

passed-by-value—a "copy" of the data is passed
» if defined as a class type the parameter is passed-by-

reference—the "reference address" is passed
– reference parameters can be used as method output!

» in calling a method, the type of the arguments must be
the same as the type of the method parameters
– implicit and explicit casting rules apply

» parameters are initialised with the argument's value

» parameters are local to the method (scope is enforced)
» variables as arguments are not changed by the method

Chapter 4 17

Pass-by-Value Example

l What is the parameter in the method definition?
» numberIn

l What is the argument in the method invocation (call)?
» next 

//definition of method to double an integer
public static int doubleValue(int numberIn)
{

return (2 * numberIn);
}// end of doubleValue()

//method call (somewhere in main() )
...
int next = SavitchIn.readLineInt();
System.out.println

("Twice next = " + doubleValue(next) );

Chapter 4 18

Pass-by-Reference:
Class Types as Parameters 

l unlike variable parameters that act as "pass-by-value", 
class parameters copy the argument's address (not the 
value) to the parameter,
» remember: objects of class are reference variables
» the parameter stores (points) to the same address as the 

argument object
l the outcome is that within the method,

actions taken on the parameter is actually
performed on the original argument!

l this implication,
» the argument value is not protected for class types!
» the argument/parameter can be used for input and output
» extra memory is not used to duplicate the entire object



5/24/03 4

Chapter 4 19

Pass-by-Reference

l pass-by-reference will be analysed in more depth when 
discussing "abstract data types" ADTs

l for the moment, just understand that there are two methods,
– pass-by-value: pass the data
– pass-by-reference: pass the address of the data

l although they are of the String class, String objects are 
special (they understand assignment (=) and work like a 
primitive type)
» pass-by-reference does not work as expected with Strings

//definition to capture String data from user
public static String getString()
{

String inputvar= SavitchIn.readLine();
return (inputvar);

}
Chapter 4 20

Method Examples
in-class discussion

l Create a method that calculates the area of a triangle 
based on the width and height of the shape,
» start with the method call in main()
» the method should use double values

l Create a method that mathematically rounds a double 
value to exactly 3 decimal places
» the method has a single parameter and returns a 

single value

l Create a method that accepts 10 phrases (strings) from 
the user and displays them as a single output
» both input and output must be done via a GUI
» the method call accepts no arguments and returns 

no value


