
5/31/03 1

Chapter 4 1

Chapter 4 - ADT

l Information Hiding and Encapsulation
l Objects and Reference

l Aspects of Object -Oriented Programming (OOP)
» Encapsulation
» Polymorphism
» Inheritance

Classes, Objects, and Methods

Chapter 4 2

/***
* Class description
**/

public class Class_Name
{

//-----------------
declarations of "instance variables"

(also called "member variables" or "global class variables")

//-----------------
definitions of class methods

} // end of class Class_Name

l instance variables and methods of a class can be defined with
the following scope modifiers,
» public (member available inside and outside the class) or
» private (member available only within the class)
» protected (this is a special modifier used with inheritance)

Summary of Class Definition Syntax

Chapter 4 3

"Information Hiding"

Information Hiding:
"hiding data and operations of an ADT"

– giving others only use of the class/object

» protecting data inside an object
» preventing direct access from outside object
» use private modifier for instance variables
» use public modifier for methods that access data,

– methods that return private variable values
l accessor methods ("accessors " or "get methods")

– methods that set private variables values
l mutator methods ("mutators " or "put methods")

Chapter 4 4

OOP:
Encapsulation

l Encapsulation
» binding (or grouping) together related data and the

methods that act on that data
» binding is "hidden" and is represented by an "abstraction"

of the relationships of the data and methods,
» "encapsulation" is as much as concept, as it is a technique
» example,

– the encapsulation of a "student" contains everything
about a single student,
but nothing about "faculty wage info" (why should it?)

» (most important aspect of OOP)

Chapter 4 5

OOP:
Polymorphism

l Polymorphism
» an expression of a definition that can 'adjust' within a

variety of conditions or states
– "poly"-many, "morph"-face or shape

» ability of a class definition (or method group) to change its
representation based on different conditions or data values

» example,
– a print() method that can display any type
– or a class.print() method that displays to either CLI or

GUI depending on which the class instance(object) has
been pre-defined for

Chapter 4 6

OOP:
Inheritance

l Inheritance
» the creation of a new definition based on the structure of a

previous definition, but most importantly, without requiring
complete knowledge of the previous definition

» technique of a class being created from another class, with
the child automatically "inheriting" all attributes & methods
of the parent class

» example,
– a new JApplet extends JApplet (the new applet class

inherits all data and methods of the standard JApplet)
– creating a new StringUpp class based on the standard

String class, except it maintains all data in uppercase
» terms:

– child="sub-class", "parent"="super-class"

5/31/03 2

Chapter 4 7

Formalised Abstraction:
Abstract Data Types (ADTs) – OOP Encapsulation

l technique used in storing "real-world" descriptions
l an ADT implies a class implementation in Java

» a container for data items, and methods to act on that data
l encourages information hiding and encapsulation

l the class's user interface allows programmers to use the
ADT (class),
» descriptions, parameters, and names of its methods

l Implementation:
» private instance variables
» method definitions (implementations) are hidden
» another programmer cannot see or change the class
» only sees the "interface" is seen or ever required

Chapter 4 8

Variables Review:
Class (Reference) Type vs. Primitive Type

l a primitive type variable directly holds the value of
the variable (identifier name is directly-associated
with the memory address storing the data value)

l A reference variable type holds a memory address,
that indirectly points to the an object in memory,
» objects in memory have multiple member variables,

and member objects, of different types, along with
"pointers" to the class's methods
– note: all objects of the same class share the actual

same methods, but use different data from the object

Chapter 4 9

Definition of an Entity
(Creating an ADT—Class Definition)

l Definition of a "Shape" class (see Shape.java)
» this class holds the statistics of a general shape,

such as:
– shapename – square, rectangle, triangleright , elllipse,

and circle
– shapecode – s, r, t, e, c
– width, height – dimensions for s, r, t, and e
– radius – dimension for c
– area - area of shape, based on code and dimensions

» the "shape" class encapsulates all the attributes that
are needed to describe a simple geometric shape

Chapter 4 10

Definition of an Entity
(Creating an ADT—Class Definition)

» this class also holds the public methods (available for
any program using the Shape class):
– Shape() –constructor, to create object at declaration;

either create an "empty" shape or fully defined shape
– setShape() – sets the attributes of an "empty" shape
– changeDim() – change dim. of s, r, t, e, c
– getShapeCode() – returns shape code
– getShapeName() – returns the full shape name
– getArea() – returns area of shape
– print() – outputs a formatted display for the shape
– printString() – returns a String, same as print()
– equals() – return bool, compare against another shape

Chapter 4 11

Using the Shape Class

l Creating a new shape object:
Shape shape1 = new Shape(); // empty shape
Shape table = new Shape(r, 10.0, 5.5); // rect. 10.0 x 5.5

Shape pill = new Shape(e, 10.0, 5.5); // ellipse 10.0 x 5.5
Shape box = new Shape(s,10.1); // square 10.0 x 10.0

Shape circx = new Shape(c, 3.2); // circle radius 3.2

l Using various methods:
shape1.setShape(c, 5.0); // set shape1 as circle
table.changeDim(5.5, 11.0); // to 5.5 x 11.0

str = box.getShapeName(); // return shape name
ar = pill.getArea(); // get area

if !(circx.equals(box)) // if shapes not same

System.out.println ("Circle not equal to box.");

if (box.equals(box)) // if the shape is itself

System.out.println ("Box is the same as itself!");

Chapter 4 12

Examining the Shape Class for OOP

l Encapsulation
» by being a class definition, the Shape class is

exhibiting encapsulation: all related attributes and
methods related to "shapeness" are gathered together

» this class has accessor and mutator methods
– accessors: getShapeCode(), getShapeName(), getArea()
– mutators: setShape(), changeDim()

– why are print() and printString() not acessors?

5/31/03 3

Chapter 4 13

Examining the Shape Class for OOP

l Polymorphism
» the Shape class represents shapes of different dims.,

– 1 dimension: squares and circles
– 2 dimensions: rectangles, triangles (right), ellipses

» to allow for this, some methods are overloaded
– Shape() –constructors
– setShape(), and changeDim() – depends on shape!

l Inheritance
» the Shape class does not explicitly show inheritance

