8
COMP123—Mid Exam 2--Sum 2004--Solutions

	[image: image1.wmf]
	The University College
of the Cariboo

Computing Science Department

	COURSE: COMP 123
	INSTRUCTOR: Yanni Giftakis

	SEMESTER: Summer 2004
	DATE: July 30th, 2004

	MIDTERM EXAMINATION 2
Solutions

Part 1 - Short Answer

[2 marks]

1. From the coursework, you extended the class SortedList from List.

Using only the brief description on the left, derive a new class called SortedDescList that creates objects which keep a list of values that are always in descending order.
(Note: such objects can not have their order changed to ascending.)
Provide constructor definitions (for the default and "copy" constructors), and override methods where necessary, such as setOrder().
Solution

Essentially, the purpose of the new class SortedDescList is to use the previous methods to force descending order, and not allow ascending order to be established.
public class SortedDescList extends SortedList
{

 public SortedDescList () // default constructor

 {

 super(); // call parent def. constructor

 setOrder(true); // set to descending order, using new setOrder()
 }

 public SortedDescList (SortedDescList other) // copy constructor

 {

 super(other); // call parent copy constructor

 setOrder(true); // set to descending order, using new setOrder()
 sort(); // resort, using parent's sort method

 }
 public void setOrder (boolean neworder) // change list order

 {

 super.setOrder (true); // force descending order

 }

 // all other methods will be inherited from SortedList
}// end of class SortedDescList
[2 marks]

2. Study closely the following class definitions and the method definitions inside them,

a) What is the output displayed on the screen from the code segment below?

Child c = new Child();

Util.print (c);

b) Is the method .special() in the class Child value? If yes, what would be displayed by the following?

Util.print (c.special());

Solution
a) The statement Util.print (c) implicitly calls the .toString() method of the object c, which means the method defined in the class Child. This method displays the variable value of this class; therefore, the output is: 10
b) Method is not valid. The reason is that the method .special() attempts to display the summation of two variables in the object c. One variable is defined in the class Child, this access is fine since the variable is local; the other variable is defined in the class Parent as a private, which means it is not directly accessible by the method in the child class.
[1 mark]

3. Identify the two (2) errors in the following code segment.
try

{

 methodA(); // perform method A, catch any errors below

}

methodB(); // perform method B, after exception handling
catch (Exception e)

{

 // action carried out for Exception
}

catch (IOException e)

{

 // action carried out for IOException
}
Solution
1st error: the call to methodB() is a syntax error and found by the compiler; this statement is out-of-place and should be moved after the catch-block

2nd error: IOException is derived from Exception; hence, the order of the catch-blocks is incorrect, since the first block will catch all exceptions and ignore the second; this is a logic error and is left to the programmer to find.
[2 marks]

4. Examine the code segment below.
StringTokenizer inputTK;

boolean again = false;

do

{

 again = false;

 try

 {

 inputTK = gather ("Enter a series of words and numbers.");
 }

 catch (NoDataException e)

 {

 Util.print (e); // No data was entered.
 again = true;

 }

}

while (again);

Write the method gather(), that returns a StringTokenizer object containing the user's input. The user's input will use spaces (' ') as delimiters (separators).
The method must have all the necessary statements to properly throw a NoDataException if the user provides no input (an input string with only spaces).
Solution
public static StringTokenizer gather (String prompt) throws NoDataException
{

 String input = ""; // to store user's input
 StringTokenizer ret; // to return the tokenized input

 input = Util.input (prompt); // get input

 if (input.equals(" ")) // if nothing was input

 throw new NoDataException(); // throw exception, stop method

 ret = new StringTokenizer (input," "); // create tokens, delimit on space
 return (ret); // return token list

}// end of gather()
[1 mark]

5. Write the exception class called NoDataException. The default exception message is,
“No data was entered."

Solution
public class NoDataException extends Exception
{

 public NoDataException ()

 {

 super ("No data was entered.");

 }

 public NoDataException (String message)

 {

 super (message);

 }

}// end of class NoDataException
Part 2 – Long Answer
[3 marks]

6. Write two void methods: encrypt() and decrypt().

encrypt() has two parameters, a text stream input and binary stream output. It reads in the characters from the text file and writes out the actual ASCII value as an int to the binary file.

decrypt() has two parameters, a binary stream input and a text stream output. It reads in the int values from the binary file and writes out the values cast as char to the text file.

The methods do not open nor close the file streams, and both pass any IOExceptions back to the method that called them (except, of course, for EOFException).
Solution
public static void encrypt (BufferedReader in, ObjectOutputStream out)
 throws IOException
{

 int input = 0; // input value / character
 input = in.read(); // read first character in input text file

 while (input != -1) // while not at EOF (end-of-file)

 {

 out.writeInt(input); // write integer value to output binary file

 input = in.read(); // read next character

 }

}// end of encrypt()

Because the EOFException must be caught to determine the end of a binary file, there are two techniques for using a loop along with the exception. Two method definitions are presented below, to describe both techniques.
Technique 1a: putting the try-catch inside the while loop, exiting with a flag

public static void decrypt (ObjectInputStream in, PrintWriter out)
 throws IOException
{

 int input = 0; // input value

 boolean atEnd = false; // flag for end of file: false=not EOF; true=EOF
 while (!atEnd) // infinite loop; terminated inside

 {

 try // try reading/writing, exit on EOFException

 {

 input = in.readInt(); // value from input binary file

 out.print((char)input); // write value as ASCII to text file

 }

 catch (EOFException e) // end of input binary file

 {

 atEnd = true; // set flag to indicate EOF
 }

 }

}// end of decrypt()

Technique 1b: putting the try-catch inside the while loop, exiting with break
public static void decrypt (ObjectInputStream in, PrintWriter out)
 throws IOException
{

 int input = 0; // input value

 while (true) // infinite loop; terminated inside

 {

 try // try reading/writing, exit on EOFException

 {

 input = in.readInt(); // value from input binary file

 out.print((char)input); // write value as ASCII to text file

 }

 catch (EOFException e) // end of input binary file

 {

 break; // break out of while-loop

 }

 }

}// end of decrypt()

Technique 2: putting the while loop inside the try-catch:
public static void decrypt (ObjectInputStream in, PrintWriter out)
 throws IOException
{

 int input = 0; // input value

 try // try reading/writing, exit on EOFException

 {

 while (true) // infinite loop; terminated by exception event
 {
 input = in.readInt(); // value from input binary file

 out.print((char)input); // write value as ASCII to text file

 }

 }

 catch (EOFException e) // end of input binary file; do nothing
 {

 }

}// end of decrypt()

[6 marks]

7. Write the complete program that reads the data from a binary file and displays the data in an ordered format organised in columns with appropriate headings.

The output goes to the console and an output text file. The program asks the user for the names of both the input binary data file and output text file.

 (Hint: use the '\t' character to help things line up, on the console and in the file.)

You are responsible for all open/using/closing of file streams, as well as exception handling.
A suggestion is to use methods to help organise the various aspects of the program.
Input File Contents:

The data in the input binary file is ordered into repeated records of temperature sensors, with each record containing,

· a String for the sensor's identification

· an int for the time (24-hour clock)

· a double for the temperature (in Celsius).

It is unknown how many sensor records are in the file, so your program will have to read until the end of the file.
Sample Data and Format for Console Display and Output to File:

ID

Time

Temp. (C)
--

E179

20

19.22
G87

11

12.52
Q12

4

15.45
TT5

13

16.33
Solution
The approach to solving the problem is to divide the complete task into smaller, easier to describe and handle situation; in Java programming, this is accomplished with classes and methods.
public class ReportProgram
{

public static void main (String[] args)

{

 BufferedReader in = null; // input binary file

 PrintWriter out = null; // output text file

 String inFileName = "", // file names

 outFileName = "";

 //--

 try // all file handling occurs within the 'try'
 {

 in = new BufferedReader (new FileReader

 (Util.input ("What is the data file name?")));

 out = new PrintWriter (new FileOutputStream

 (Util.input ("What is the report file name?")));

 // report goes to 'out' as well as console (via Util.print())
 produceReport (in,out); // produce report; throws IOException
 in.close(); // close input file

 out.close(); // close output file

 }

 catch (IOException e) // capture any fatal exception errors

 {

 System.err.println (e); // display exception message

} // end of main()

 // produce report, with info from data to report and console
public static void produceReport (BufferedReader data, PrintWriter report)

 throws IOException

{

 String line = ""; // output report line

 String ID = ""; // data: ID
 int Time = 0; // data: Time

 double Temp = 0.0; // data: Temp
 //--

 // display report header to report and console

 line = "ID \tTime \tTemp. (C) \n";

 Util.print (line); report.print (line);

 line = "-- \t---- \t--------- \n";

 Util.print (line); report.print (line);

 try // try reading from the file; catch when at EOF
 {

 while (true) // loop for data file
 {

 ID = data.readUTF(); // read ID from file
 Time = data.readInt(); // read Time from file

 Temp = data.readDouble(); // read Temp from file

 // prepare report line

 line = ID + "\t" + Time + "\t" + Temp + "\n";

 Util.print (line); report.print (line);

 }

 catch (EOFException e) // at end of file; nothing to do but stop

 {

 }

}// end of produceReport()

} // end of class ReportProgram

For input/output with the user, you may use the utility class Util, and its methods,

Util.input() - has a single String parameter (the message) and the String input from the user; methods .inputInt() and .inputDouble() are also available

Util.print() – a void method that can display any type passed as an argument

For any code you write, assume all imports have been done (such as java.io.* and java.util.*)

But provide all necessary variable and object declarations for your code segments and programs (such as for I/O streams).

public class Parent

{

 private int value;

 public Parent ()

 {

 value = 5;

 }

 public String toString()

 {

 return (""+value);

 }

}// end of class Parent

public class Child extends Parent

{

 private int value;

 public Child ()

 {

 super();

 value = 10;

 }

 public String toString()

 {

 return (""+value);

 }

 public int special()

 {

 return (super.value + this.value);

 }

}// end of class Child

public class SortedList extends List

{

 private boolean order;

 public SortedList ()

 { super();

 order = false; //ascending

 }

 // "copy" const.

 public SortedList (SortedList o) ...

 public add (int newvalue)

 { super.add(newvalue)

 sort();

 }

 public setOrder(boolean order)

 { this.order = order;

 sort();

 }

 protected void sort() ...

 public boolean equal (SortedList o) ...

� …rest of methods as per coursework…

 // a better way is to trim the string so nothing is stored...

 //input = input.trim(); // trims string (removes spaces) after input

 // if (input.equals("")) // if there is nothing in the string

 // throw new NoDataException();

