[image: image1.png]

COMP123

2

	
	THE UNIVERSITY COLLEGE

OF THE CARIBOO

Computing Science
 COMP123 – Computer Programming II

Lab Exercises #2 – Arrays
no submission required
Introduction

Arrays are one of the fundamental data structures used in almost all programming languages.

Arrays are easy to grasp (compared to other structures), follow simple rules for memory allocation and de-allocation, and can be clearly included in programs without explaining other declarations of data structures.

With Java's short arrays declaration (to allocate memory) and powerful garbage collection algorithms (to de-allocate memory), they are used often to store data that originates, and must be stored, in series.
The following exercises are intended to review some of the basics about arrays, as well as provide you a chance to experiment with 2D arrays.

Exercises

(Note: answers to "self-test" questions can be found at the end of the relevant chapter.)
1. Write a method called displayArray() that has only one parameter: intRay[] an array of ints.
The method displays the array contents to the screen (CLI or GUI).
Write another method also called displayArray() that has only one parameter: StringRay[] an array of Strings. The method display the array contents to the screen (CLI or GUI).

Note: Both methods called displayArray() have different parameter types. This is the OOP concept called polymorphism.
2. Write a method called createIntArray() that returns a reference (memory address) to a new int array. The method has only one parameter: size describing the length of the new array. Initialise the array with values that correspond to the element index.
Test this method in a program class. Use the displayArray() method to display a created array.
3. Write another method called createStringArray() that returns a reference to a new String array. The method has only one parameter: size describing the length of the new array. Initialise the array with values that correspond to sequential Unicode characters starting at 'A' (Unicode: 65).
Test this method in the above program class. Use displayArray() to display the created array.
To initialise the String elements as stated, consider the following code example:
String[] letters = new String[30];

for (int i=0; i<letters.length; i++)

 letters[i] = ""+(char)(65+i);
4. Self-test questions on page 372: #11, #12; page 404: #22, #23, #24.

5. Prepare your answer from question #23 above into a method called getValues(). The method returns a pointer to a 2D int array (int[][]), and has two parameters: the (x,y) size of the 2D array.
Test the method in a program that uses GUI interaction. In the main(), call getValues() to fill an array and call display() to output the array values to a single dialog box.
6. Arrays in Java are fixed in size, meaning that if an array is declared of size 10 (10 elements) it will always be of size 10. But this rule can be overlooked by using the following algorithm:

· declare an new array of a size larger than the old array

· copy all values from the old array to the new array (set extras as zero, or null, accordingly)

· copy the memory location (address) of the new array to the old array (so the old array "points" to the new array elements)

· write a method called makeLarger() that has two parameters: an array of double and a new size. The method returns a pointer to a double array (double[]), which is of a size that must be larger than the argument array and contains all the original values (if size is smaller, set to old size).

· include the method in a program (CLI or GUI) that fills the array with values from 1 to 15, displays those values, calls makeLarger() to make the array 5 elements larger, includes the values 20 to 16 (yes, in reverse order), then displays the newly enlarged array.
7. {Special Challenge Problem; review composing classes in Chapters 4 & 5, and using an array as an instance variable (pg 377)}
Create a class called NumberList. This class has:

· one private instance variable: number[], which holds an array of double values
· three public methods: total(), the total of the double values; getLength(), returns the number of elements in the array number[]; addNumber(), which makes the array one element larger and adds the single argument to the list; and display(), which displays the numbers in the list and the total
· hints: you may have to overload the default constructor to set the initial array to zero size (point the array to null)
· initially, the instance array points to the NULL, since no array elements exist yet
· elements are added to the array by using the addNumber() method
· a default constructor that inits. the number[] array to null (to signify no initial values)
· code NumberList as a separate file (NumberList.java that gets compiled to NumberList.class)

· test this class in a program that verifies the NumberList class, by creating a NumberList object (or two) and ensuring the methods work properly.
· note that this program is similar, but different, to the one shown in Chapter 6 (pg 377)

Conclusion
There is nothing to submit for these exercises, and solutions will be posted soon.

You are encouraged to ask questions to ensure your solutions are complete.

