[image: image1.png]

COMP123

2

	
	THE UNIVERSITY COLLEGE

OF THE CARIBOO

Computing Science
 COMP123 – Computer Programming II

Lab Exercises #4 – Inheritance and Exceptions
no submission required
Introduction

Inheritance
To summarise the ideas expressed in lecture (and in the assignment), a few review questions are presented. But this does not mean the conclusion of OOP discussions, only the continuation of some very important concepts.

Exceptions
The ability to throw and catch an exception provides a lot of power to a programmer. Simple data validation (such as user-input), capturing major errors that could disable an application, or just enabling better program control is the result of utilising exception in a program.

The following exercises provide some practise with the basic syntax of exceptions.
Exercises

Although solutions to the self-test questions are available at the end of chapter, make the attempt at getting your own answer.

Inheritance
1. Self-test questions:
a. page 427: #2, 3, 4
b. page 439: #9, 12, 13

c. page 442: #15 ** interesting
d. page 454: #17
e. page 465: #20, 21, 27
2. Is possible to derive a new class based on the class String?

Test this by trying to derive a new class called String2. In this new class, include a single private instance variable of type String, a default constructor to initialise the variable to "", and an accessor method called .retString() that returns the contents of the variable.

Exceptions
1. Self-test questions:
a. page 489: #11, 12
b. page 499: #16, 17 ** interesting
c. page 500: #19, 20
d. page 511: #24, 25, 30
e. page 516: #33

2. Program
One of the very useful applications of exception handling is in "validation of user input," which ensures that a user's input is clean and within a defined range.
Write a complete program that converts dates from a numerical month, day format to an alphabetic month day format. For example, the input: 1 31 would be returned as "January 31"

Specifically, use a GUI screen to enter the input and display results, and continue performing conversions until the user wishes to stop.
If the user's input is in error, a special message should be displayed that describes which error has occurred, then let's the user continue with another conversion

In the program, you are expected to define, and use, at least two exception classes,

· MonthException class

· any input that not a legal numeric month (anything outside 1 to 12) should throw a MonthException
· DayException class

· any input other than a valid day number (integer values 1 to 29, 30, or 31, depending on the month), will throw a DayException.

· to simplify things always allow 29 days in February

· to determine when to throw this exception, you need to determine the number of days within each month…look this up in a calendar; to simply things, always allow for 29 days in February
· along with handling the above exceptions, the program needs to capture any "non-numeric" input from the user; HINT: Integer.parseInt() throws a NumberFormatException if it encounters any problems in converting a String to an int.
Use the examples in Chapter 8: Displays 8.4 (pg 492), 8.6 (pg 504), and 8.10 (pg 523).
The design of the program class, methods, and overall structure is left to you.

Test your program with the following test data a) – f):

a) 1 31
-> January 31

b) 10 22
-> October 22

c) 5 7

-> May 7

d) A 22
-> non-numeric input error

e) 0 -11
-> bad month (also a bad day)

f) 3 today
-> non-numeric input error

g) 8 32
-> bad day

Conclusion
There is nothing to submit for these exercises, but you are encouraged to verify that your methods work correctly.

