[image: image1.png]

COMP123

3

	
	THE UNIVERSITY COLLEGE

OF THE CARIBOO

Computing Science
 COMP123 – Computer Programming II

Lab Exercises #5 – Files
and Assignment #2
Marks: 10
Due Date: August 6, 2003
Introduction

Although a Java program can store data internally in memory, once the program stops running anything in memory is 'garbage collected' and lost.

For longer-term data storage (before and after a program is run) disk files are used. Files let data be saved outside the program, making them almost independent of the program…well almost, since the content of the files must be known.

With such an important use of files, understanding the similarities and differences between the "console stream" and "file streams," and how data is stored in files, is vital in understanding the how data are stored.
Text Files
Text files are the most standard type of file, since they can be stored and read by any program on any operating system. Further, text files can be viewed by users through the use of even the simplest text editor.

But this standardisation comes at a cost. Text files consist only of sequences of characters (either as ASCII or Unicode numeric values), which can be read individually or as Strings.
To store and retrieve useful data, binary files are used, since they do not require conversion or parsing, such as through Integer.parseInt().
Binary Files
As they contain only character data, text files are a liability when different data types must be stored and retrieved. Binary files are much more applicable to most applications requiring exact data storage to disk.

In most respects, binary files are much easier to work with, since there is no question as to the value in the file (if it is read correctly), and binary values do not require conversion or parsing.
Exercises

Although solutions to the self-test questions are available at the end of chapter, make the attempt at getting your own answer.
Self-test questions:
a. page 544, #3

b. page 560, #11, 13
c. page 565, #14, 16
d. page 580, #21, 22
e. page 584, #25, 27
f. page 586, #31
g. page 593, #37 (** interesting), 38 (** interesting)
h. page 602, #41, 42, 43 (** questions about Serializable)
Part A – A "Special" File Copy program for text files
As practise with the basics of using files, write a program that lets the user make a copy of a text file. The program gives the user options of changing slightly the content of the original file as it makes the copy:

Special File Copy Utility

What is the name of original (source) file : sample.file

And the name of the copy (destination) file: crazy.txt
Options,

1. Exact copy

2. Convert all characters to lowercase

3. Remove all spaces

4. Reverse entire file

selection: 4
Copy completed. Check crazy.txt for output

The program design is up to you, but consider the following suggestions:

· read each character rather than each line of the file

· use methods for each option, passing in the file input and file output stream objects as arguments

· for option 4, build a String containing the reverse of the file, or build a string to parse in reverse

· use exception handling to deal with input files that don't exist, improper file names, and the mistake of providing the same filename for both source and destination

Part B – Cleaning up a text file
Write a program that uses the StringTokenizer class to clean up the data in a text file. The data is then written to a binary file, so that it can be read later.
The content of the source file is a collection of individual person information records, with each record containing exactly the following elements: first name, last name, age, wage ($)
In the source file, the records are complete (no missing elements), and the elements are delimited with either spaces or commas, and of course, new lines.

Your program takes in the original data, parses it (using StringTokenizer), and outputs the data to a binary file. The order of the data in the binary should be the same as above.

To create the original data file, use Notepad or JCreator.
The program should ask the user for the names of the original text file, and the name of the binary data file.
Part C – Reading the data file to create a report
Write another program related to the one in Part B.
This program reads the data in the binary file and creates a report text file, using the following format,

Personnel Information

Last Name

First Name

Wage $
Age

Jackson

Tom

19.45

25

Leong

Tammy

22.75

30

In creating the report, use the '\t' character to help line up the columns. For formatting the wage, use the DecimalFormat class (see page 909).
The program should ask the user for the names of the original binary file, and the name of the report file.

For Parts B and C
Aside from using your own test file, your instructor will provide a program must be run against the file provided by your instructor.
Conclusion
Submit the following:

Part A
· print of the complete, well-documented, and well-formatted program source code

· print of the original test file (type up a small file in Notepad, and use the Helloworld.java file)
· print of the output files testing each of the options

Parts B and C
· print of the complete, well-documented, and well-formatted program source code

· print of the various files used as input and output, except for the binary file since it is unreadable except by the program you wrote
· print of the instructor's file and the associate formatted file

