[image: image1.png]



COMP123

2

	
	THE UNIVERSITY COLLEGE 

OF THE CARIBOO

Computing Science
        COMP123 – Computer Programming II


Lab Exercises #6 – Dynamic Data Structures
no submission required
Introduction

Dynamic data structures offer many advantages over simpler static data structures: flexibility in size, flexibility in storage (different object types), and efficient memory allocation.
With dynamic data structures, as seen with Vectors, the underlying algorithms and structure are intricate (more so than with basic arrays), but the actual usage is fairly simple—which, of course, is the goal.  These structures are wonderful examples of the concepts of information hiding and encapsulation.
But as with anything that is "simple to use" on the surface, dynamic data structures hide their complexity.  Therefore, taking time now to examine their organisation saves a lot of frustrated hours in using them later.

Exercises 

Solutions to the self-test questions are available at the end of chapter.
Self-test questions:
a. page 621, #2, 5
b. page 621, #6 (use two techniques: use the vector's .toString() approach, and a loop using each element's .toString() )

c. page 626, #9 (**interesting)

d. page 627, #11

Project 1 – Exercise #7, page 621
Use the bubble sort technique rather than the selection sort mentioned in the problem.
Instead of writing a class called StringSelectionSort, call it StringSort or StringBubbleSort.  This class will be a static class, similar to a Utility Class.

Use the tester class and its main() included after the problem statement, and replace the statement that performs the sort to call the .sort() method in your class.
Question:  Consider the for loops that display the strings in the vector, 
for (i=0; i < b.size(); i++)
   System.out.print( b.elementAt(i) + " ");

it should properly be coded as,
for (i=0; i < b.size(); i++)

   System.out.print( (String)b.elementAt(i) + " ");
but works both ways; why?  (Hint: does the class Object have a .toString() method that is inherited or overridden when the class is extended?)
Project 2 – Updating the List class
Take the List class from the previous assignment and copy the List.java file to ListNew.java.
Modify the class, replacing the array values[ ] with a Vector object that contains a collection of Double objects (wrapper objects to hold double numbers).  You will have to modify all the methods,
List() – default constructor that initialises the vector, to an empty vector
add() – adds a new double value to the vector, must wrap it in a new Double object and add the object

get() – returns the double value stored in the Double object at the vector element at i, use the .elementAt() and the .doubleValue() method of the Double class
length() – returns the size of the vector (number of valid elements)

shrink() – change the method so that it just uses the .removeElementAt() mehod
swap() – exchange to elements in the vector at indexes i, j; you will have to use a temporary Double object as well as the .elementAt() and setElementAt() methods
total() – returns the sum of all the values in the vector; use the .elementAt() and the .doubleValue() method of the Double class; or don't change anything since .get() works as before!
toString() – just use the fact that each element in the vector is an object that has it's own .toString() method, or don't change anything since .get() works as before!
(or maybe just use the .toString() method of the vector itself!)
Once the class ListNew is finished, modify the IntegerList and SortedList classes to extend ListNew.  Everything should work as expected for these classes.

This is a good example of applying OOP's encapsulation, inheritance, and polymorphism.
Conclusion
There is nothing to submit for this lab exercise set.






