

 THE UNIVERSITY COLLEGE

OF THE CARIBOO
Computing Science – COMP213

Lab Exercises #10 – C – Multi-file Compilation and Text Files

Marks: 5 marks Due: Wednesday, Nov. 24, 2004

Introduction
Multi-file Compilation

Except for simple class exercises and assignments, very few real-world applications have such limited
scope to be encompassed by only a single program file. By using multiple source code files, complex projects
can be split amongst programmers and code can be segmented and shared effectively between programs.

Further, once a library file is compiled, and proven stable, it can be used across various projects. This leads to
reliable and consistent program development.

Text Files

Long term data storage requires programs to have the ability to accept input (read) and generate output
(write) to disk files. Files are either text files, using only ASCII or Unicode character coding, or pure binary
files, in which the data is understood only by the program.

It is understood that text files are just binary files with all data organised as ASCII character codes: each data
value is 1-byte (or as Unicode as 2-bytes).

For this exercise, only ASCII text files are considered.

Resources and References
You are strongly encouraged to use the C programming references placed on the course website. For both
topics examined in this exercise, the best learning tool is experience and example.

Exercises / Programming Problems
1. What is the difference in usage between the <> and "" in the following example #include directives.

#include <stdio.h>
#include "utilprog.h"

2. Modify your solution to problem #8 in Lab Exercises #9 – the rotateInt() function.

Change the program such that all functions, except for main(), are placed in a file called funcs.c. Create a
proper header file, called funcs.h used to access the functions in funcs.c.

With a valid header file present, use one of the following command-line compilation methods:

1) separate compilation and linkage:

__> gcc –c funcs.c � creates the object file, funcs.o
__> gcc lab8_9.c funcs.o –o lab8_9.out � if lab8_9 is the application file

or
2) combined compilation and linkage:

__> gcc lab8_9.c funcs.c –o lab8_9.out � again, if lab8_9 is the application file

3. Based on the solution to the problem above, if the file funcs.c was compiled, and the object file funcs.o
was then distributed for use without its source-code file, does the funcs.h still need to be present during
compilation of a final application?

COMP213 2

4. Assume the following header file is available, does it require an accompanying library or resource file

(_.c)? If so, what would the file look like?
Considering that this header file could itself be included within many files (both .h and .c) in a single multi-
file compilation, what seems to be missing? (hint: compiler directives)

/* file: bool.h */

typedef int BOOLEAN; // create new type
#define TRUE 1 // TRUE is defined by 1
#define FALSE 0 // FALSE is defined by 0

/* end of: bool.h */

5. Rather than having the program open/close input and output text files, the operating system can redirect
text files for input to a program, and redirect program output to a file.

Consider the following example, in which a program sample is provided input via in.dat (so the user never
types) and console output saved to result.txt.

__> ./sample <in.dat >result.txt

Describe one advantage this technique has over requiring the program to open both files.
Also, describe one disadvantage. (hint: what type of program-user interaction is occurring?)

6. Describe how all the following functions indicate that a "file error" or "end of file" has been reached and no
further reading is possible? (Some research is required; consider the Linux man pages.)

fopen(), getc(), fgets(), fscanf()
and feof(), ferror()

7. Write a program that reverses the content of a text file, for example,

input file content:

Sammy was a puppy.
Sammy was a brown puppy.

output file content:

.yppup nworb a saw ymmaS

.yppup a saw ymmaS

In the program, create a function reverseContent() that performs the reversal. This function has two
parameters: an input file pointer, and output file pointer, and returns nothings. Place this function in a
resource file along with an accompanying header file.

Of the techniques to solve the problem, the following are the most popular:

– use a recursive function that reads a character, calls itself to read another, then displays the
character it read before calling itself; or

– read the text file once, determine the number of characters, close the file, declare a character array
of the correct size, then read the file again using the array to store the data; then display the array
in reverse to the output file

Conclusion
You are encouraged to complete all problems, but only problems #2 and #7 are required for submission.
Provide properly documents source code (output prints only where reasonable).

