

 THE UNIVERSITY COLLEGE

OF THE CARIBOO
Computing Science – COMP213

Lab Exercises #11 – C – Text Files

Marks: 5 marks Due: Wednesday, Dec 1., 2004

Introduction
It is said by many that, "practise makes perfect."

Well, it is only assumed that perfect is the result, yet there must be practise in any case. Hence, the following
exercises provide another opportunity to play with files, as well as review ideas from previous exercises.

Resources and References
Even though this is the final set of lab exercises, you are still strongly encouraged to use the C programming
references placed on the course website.

Exercises / Programming Problems
1. There are a few problems with this program that should output a series of values to a file—fix it!

int main(void)
{
 int fp;
 int k;

 fp = fopen ("numbers");
 for (k=0; k<3000; k++)
 putc (k,fp);

 fclose ("numbers");
 return (0);
}

2. Write a program that reads all the characters in a text file.

The purpose of the program is to calculate and display the "average character." The average character is
determined by adding together the integer ASCII values of the characters read from the file, divided by the
number of characters. As an integer, the average value represents an ASCII symbol: the average character.

3. Write a program that asks the user for an input text file and counts the number of occurrences of each
alphabetic character in the file (any symbols other than A..Z are ignored).

A table is displayed showing a count of only the letters in the file (if a particular letter count is zero (0), that
letter is not displayed in the table).

Consider the following suggestions for the program,

– case is not important: 'A' and 'a' are the same alphabetic character

– declare an int array of 26 long (the number of letters in the English alphabet), with each element
storing the count for a particular character: [0] – 'A', [1] – 'B', [2] – 'C', …

– instead of using a large if-or switch-case statement to determine which element to incr. the count,
recall that all ASCII characters are in alphabetic sequence starting with 'A' (65); therefore, by
subtracting 65 from the ASCII value of the character just read, this is the index to the array.

Test the program with a small file that contains a known number of specific characters.

COMP213 2

4. Running a program from a command-line (CL) allows for an extra opportunity to provide a program with

input as it runs, as compared to just double-clicking on a GUI icon.

Command-line arguments are processed to a program through the main() function parameters.

Compile, and test, the following program that echoes the contents of a file to the screen, or echoes the
contents to another file, with the names of the files being obtained from the command-line.

/* File: arg_copy.c
 Purpose: program that copies contents of source file to console or other
 file, depending on command-line arguments:

 args[1] - contains name of source file
 args[2] - contains name of destination file; if empty send output to
 console.

 Any file errors (error opening, or missing args[1]) results in calling
 exit(0).

*/
#include <stdio.h>
#include <stdlib.h> // for exit(0);

 // CL params: argc - number of arguments
 // args - array of c-strings (array of char): argument data
 // (note: char *args[] can also be coded as char **args)
int main (int argc, char *args[])
{
 // args[0] - name of command/program being executed
 // args[1]..[n] - command-line arguments 1..n
 FILE *finput, *foutput; // file input & output pointers

 char ch=0; // the transfer character

 //--
 switch (argc) // decide what to do on number of arguments
 {
 case 0: // no arguments; impossible (will never happen!)
 exit(0); // stop

 case 1: // 1 argument (the program name: arg_copy
 printf ("Insufficient arguments.\n");
 exit(0); // stop

 case 2: // 2 arguments; copy to console
 finput = fopen (args[1],"r"); // open file as read
 foutput = stdout; // open to console
 break;

 case 3: // 3 arguments; copy to other file
 finput = fopen (args[1],"r"); // open file as read
 foutput = fopen (args[2],"w"); // open file as write
 break;

 default: // 4, or more, arguments
 printf ("Too many arguments.\n");
 exit(0); // stop
 }

 // if file open errors; similar to (finput==NULL) || (foutput==NULL)
 if ((ferror(finput)!=0) || (ferror(foutput)!=0))
 {
 printf ("Error opening on of the files.\n");
 exit(0);
 }

COMP213 3

 // copy content
 ch = getc(finput); // get initial character
 while (!feof(finput)) // loop while not end of file
 {
 putc(ch,foutput); // output character
 ch = getc(finput); // get next character
 }

 // close files
 fclose(finput); // close input file
 fclose(foutput); // close output file

}// end of main(): arg_copy.c

5. Modify the arg_copy.c (from the previous question), so that a 4th argument is possible. This parameter,
called security, is a single character that must be either an 'E' (for encoding) or a 'D' (for decoding); other
values are an error and the program stops.

If security is to encode ('E'), each character is rotated one bit to the right before being written; if security is
to decode ('D'), each character is rotated one bit to the left before being written.

Question: Can the program be executed, and the encoding/decoding performed, if the arguments describe
showing to the console?

You will need to use a modification of the rotateInt() function, calling it rotateChar() instead.
Also, use the nature of a "string" in C just being an array of char to select the first character in the
argument: args[3][0] .

Test the program by encoding a source file to an intermediate file, decoding the intermediate file to a
destination file, and examining the source and destination files: are they the same?

6. Modify the "average character" program you wrote in question 2.

Add a line that displays the address of the input file pointer as it reads a file, and examine: does the address
change? Explain why this address does, or does not, change.

Conclusion
You are encouraged to complete all problems, but only problems #3 and #5 are required for submission.
Provide properly documents source code, output captures necessary (output prints only where reasonable).

