

 THE UNIVERSITY COLLEGE

OF THE CARIBOO
Computing Science – COMP213

Lab Exercises #11 – C – Text Files

Solutions

Exercises / Programming Problems
1. There are a few problems with this program that should output a series of values to a file—fix it!

int main(void)
{
 int fp; �
 int k;

 fp = fopen ("numbers"); �
 for (k=0; k<3000; k++)
 putc (k,fp); �

 fclose ("numbers"); �
 return (0);
}

The mistakes identified with � above are corrected below,
int main(void)
{
 FILE *fp; ����
 int k;

 fp = fopen ("numbers","w"); ����
 for (k=0; k<3000; k++)
 fprintf (fp,"%d ",k); ����

 fclose (fp); ����
 return (0);
}

2. Write a program that reads all the characters in a text file.

The purpose of the program is to calculate and display the "average character." The average character is
determined by adding together the integer ASCII values of the characters read from the file, divided by the
number of characters. As an integer, the average value represents an ASCII symbol: the average character.

int main(void)
{
 FILE *in;
 char filename[40];

 char inChar=0; // input character
 int totA=0; // total of ASCII values
 int numChars=0; // number of characters read in
 char avrgChar=0; // average character
 //---

 printf ("For which file shall I determine the average char? ");
 scanf ("%s",filename);
 getchar();

COMP213 2

 in = fopen (filename,"r"); // open file as read

 inChar = getc(in);
 while (inChar != EOF) // or, !feof(in) ;while not file eof yet
 {
 numChars++; // incr. number of characters read
 totA += (int)inChar; // add ASCII value to total
 inChar = getc(in); // read char from file
 }
 // calculate average
 avrgChar = (char)(totA/numChars);

 fclose (in);

 // display results
 printf ("For file %s, %d chars. read. \n Average char is: %c",
 filename,totA,avrgChar);

 getchar();
 return (0);
}

3. Write a program that asks the user for an input text file and counts the number of occurrences of each
alphabetic character in the file (any symbols other than A..Z are ignored).

A table is displayed showing a count of only the letters in the file (if a particular letter count is zero (0), that
letter is not displayed in the table).

Consider the following suggestions for the program,

– case is not important: 'A' and 'a' are the same alphabetic character

– declare an int array of 26 long (the number of letters in the English alphabet), with each element
storing the count for a particular character: [0] – 'A', [1] – 'B', [2] – 'C', …

– instead of using a large if-or switch-case statement to determine which element to incr. the count,
recall that all ASCII characters are in alphabetic sequence starting with 'A' (65); therefore, by
subtracting 65 from the ASCII value of the character just read, this is the index to the array.

Test the program with a small file that contains a known number of specific characters.

int main(void)
{
 FILE *infile;
 char filename[40];

 char inChar=0; // input character
 int letters[26]; // array to contain character counts
 int i=0; // loop control

 //---
 // zero the character count array
 for (i=0; i<26; i++)
 letters[i] = 0;

 printf ("For which file shall I produce a character count? ");
 scanf ("%s",filename);
 getchar();

 infile = fopen (filename,"r"); // open file as read

COMP213 3

 inChar = getc(infile); // read char from file
 while (inChar != EOF) // while not file eof yet
 {
 // ensure character is in uppercase
 if ((97 <= inChar) && (inChar <= 122)) // if char 'a'<=x<='z'
 inChar = inChar - 32; // lower to uppercase

 if ((65 <= inChar) && (inChar <= 90)) // if char 'A'<=x<='Z'
 letters[inChar-65]++; // incr. approp. element

 inChar = getc(infile); // read char from file
 }
 fclose (infile);

 // display character table
 printf ("The character counts\n");
 for (i=0; i<26; i++)
 if (letters[i]>0) // display letters that have counts
 printf (" %c : %d \n",(char)(65+i),letters[i]);

 getchar();
 return (0);
}

4. Running a program from a command-line (CL) allows for an extra opportunity to provide a program with
input as it runs, as compared to just double-clicking on a GUI icon.

Command-line arguments are processed to a program through the main() function parameters.

Compile, and test, the following program that echoes the contents of a file to the screen, or echoes the
contents to another file, with the names of the files being obtained from the command-line.

/* File: arg_copy.c
 Purpose: program that copies contents of source file to console or other
 file, depending on command-line arguments:

 args[1] - contains name of source file
 args[2] - contains name of destination file; if empty send output to
 console.

 Any file errors (error opening, or missing args[1]) results in calling
 exit(0).

*/
#include <stdio.h>
#include <stdlib.h> // for exit(0);

 // CL params: argc - number of arguments
 // args - array of c-strings (array of char): argument data
 // (note: char *args[] can also be coded as char **args)
int main (int argc, char *args[])
{
 // args[0] - name of command/program being executed
 // args[1]..[n] - command-line arguments 1..n
 FILE *finput, *foutput; // file input & output pointers

 char ch=0; // the transfer character

COMP213 4

 //--
 switch (argc) // decide what to do on number of arguments
 {
 case 0: // no arguments; impossible (will never happen!)
 exit(0); // stop

 case 1: // 1 argument (the program name: arg_copy
 printf ("Insufficient arguments.\n");
 exit(0); // stop

 case 2: // 2 arguments; copy to console
 finput = fopen (args[1],"r"); // open file as read
 foutput = stdout; // open to console
 break;

 case 3: // 3 arguments; copy to other file
 finput = fopen (args[1],"r"); // open file as read
 foutput = fopen (args[2],"w"); // open file as write
 break;

 default: // 4, or more, arguments
 printf ("Too many arguments.\n");
 exit(0); // stop
 }

 // if file open errors; similar to (finput==NULL) || (foutput==NULL)
 if ((ferror(finput)!=0) || (ferror(foutput)!=0))
 {
 printf ("Error opening one of the files.\n");
 exit(0);
 }

 // copy content
 ch = getc(finput); // get initial character
 while (!feof(finput)) // loop while not end of file
 {
 putc(ch,foutput); // output character
 ch = getc(finput); // get next character
 }

 // close files
 fclose(finput); // close input file
 fclose(foutput); // close output file

}// end of main(): arg_copy.c

Using the program depends completely on the command-line arguments. Examples,

./arg_copy � (argc = 1) results in the message, "Insufficient Arguments."

./arg_copy file.txt � (argc = 2) displays the contents of file.txt to stdout (the console)

./arg_copy file.txt other.txt � (argc = 3) copies the contents of file.txt to other.txt

./arg_copy file.txt other.txt thing � (argc = 4) displays,"Too many arguments."

5. Modify the arg_copy.c (from the previous question), so that a 4th argument is possible. This parameter,
called security, is a single character that must be either an 'E' (for encoding) or a 'D' (for decoding); other
values are an error and the program stops.

If security is to encode ('E'), each character is rotated one bit to the right before being written; if security is
to decode ('D'), each character is rotated one bit to the left before being written.

Question: Can the program be executed, and the encoding/decoding performed, if the arguments describe
showing to the console?

COMP213 5

You will need to use a modification of the rotateInt() function, calling it rotateChar() instead.
Also, use the nature of a "string" in C just being an array of char to select the first character in the
argument: args[3][0] .

Test the program by encoding a source file to an intermediate file, decoding the intermediate file to a
destination file, and examining the source and destination files: are they the same?

/* File: lab11q5.c
 (a modification of the program arg_copy.c)
 Purpose: program that copies contents of source file to console or other
 file, depending on command-line arguments:

 args[1] - contains name of source file
 args[2] - contains name of destination file; if empty send output to
 console.

 (modification)
 args[3] - contains the encoding format: 'E'-encode, 'D'-decode

 Any file errors (error opening, or missing args[1]) results in calling
 exit(0).

*/
#include <stdio.h>
#include <stdlib.h> // for exit(0);

char rotateRight1 (char source); // rotate char parameter to right by 1 bit
char rotateLeft1 (char source); // rotate char parameter to left by 1 bit

 // CL params: argc - number of arguments
 // args - array of c-strings (array of char): argument data
 // (note: char *args[] can also be coded as char **args)
int main (int argc, char *args[])
{
 // args[0] - name of command/program being executed
 // args[1]..[n] - command-line arguments 1..n
 FILE *finput, *foutput; // file input & output pointers

 char codeType = 0; // the type of coding: 'E'-encode, 'D'-decode
 char ch=0; // the transfer character

 //--
 switch (argc) // decide what to do on number of arguments
 {
 case 0: // no arguments; impossible (will never happen!)
 exit(0); // stop

 case 1: // 1 argument (the program name: arg_copy
 printf ("Insufficient arguments.\n");
 exit(0); // stop

 case 2: // 2 arguments; copy to console
 finput = fopen (args[1],"r"); // open file as read
 foutput = stdout; // open to console
 break;

 case 3: // 3 arguments; copy to other file
 finput = fopen (args[1],"r"); // open file as read
 foutput = fopen (args[2],"w"); // open file as write
 break;

COMP213 6

 case 4: // 4 arguments; copy to other file, but D/Encode
 finput = fopen (args[1],"r"); // open file as read
 foutput = fopen (args[2],"w"); // open file as write
 codeType = args[3][0]; // grab the character: E or D
 if ((codeType != 'E') && (codeType != 'D')) // if not E or D
 {
 printf ("Encode or Decoding not indicated correctly.\n");
 exit(0);
 }
 break;

 default: // 4, or more, arguments
 printf ("Too many arguments.\n");
 exit(0); // stop
 }

 // test for opening errors; similar to (finput==NULL) || (foutput==NULL)
 if ((ferror(finput)!=0) || (ferror(foutput)!=0))
 {
 printf ("Error opening one of the files.\n");
 exit(0);
 }

 // copy content
 ch = getc(finput); // get initial character
 while (!feof(finput)) // loop while not end of file
 {
 // determine what to do with the character
 if (codeType == 'E') // codeType is to Encode: rot. 1 bit to right
 ch = rotateRight1(ch); // call function to rotate right by 1
 else if (codeType == 'D') // codeType is to Decode: rot. 1 bit to left
 ch = rotateLeft1(ch); // call function to rotate left by 1
 //else...don't to anything to the character!!

 putc(ch,foutput); // output character
 ch = getc(finput); // get next character
 }
 // close files
 fclose(finput); // close input file
 fclose(foutput); // close output file
}

/* rotateRight1() - rotate char parameter to right by 1 bit */
char rotateRight1 (char source)
{
 unsigned char lostBit = source & 1; // store LSB bit that will be lost
 source = source >> 1; // shift source to right by 1; MSB becomes 0
 lostBit = lostBit << 7; // move lost bit to MSB position
 source = source | lostBit; // put them back together
 return (source); // return as a char that is rotated to right
}

/* rotateLeft1() - rotate char parameter to left by 1 bit */
char rotateLeft1 (char source)
{
 unsigned char lostBit = source & 128; // store MSB bit that will be lost
 source = source << 1; // shift source to left by 1; LSB becomes 0
 lostBit = lostBit >> 7; // move lost bit to LSB position
 source = source | lostBit; // put them back together
 return (source); // return as a char that is rotated to right
}

Of special note for the program is the use of the datatype unsigned char in the rotation
functions. By using this type, any possible integer operations on the type maintain that the value
is always positive.

COMP213 7

6. Modify the "average character" program you wrote in question 2.

Add a line that displays the address of the input file pointer as it reads a file, and examine: does the address
change? Explain why this address does, or does not, change.

/* File: lab11q2.c
 Modified to: lab11q6.c
 Purpose:
 The purpose of the program is to calculate and display the "average
 character." The average character is determined by adding together
 the integer ASCII values of the characters read from the file, divided
 by the number of characters. As an integer, the average value
 represents an ASCII symbol: the average character.

 Modification: shows the file pointer address.
 The purpose is to display what the file pointer is "pointing to",
 not the address of the file pointer!
*/
#include <stdio.h>

int main(void)
{
 FILE *in;
 char filename[40];

 char inChar=0; // input character
 int totA=0; // total of ASCII values
 int numChars=0; // number of characters read in
 char avrgChar=0; // average character
 //---

 printf ("For which file shall I determine the average char? ");
 scanf ("%s",filename);
 getchar();

 in = fopen (filename,"r"); // open file as read

 inChar = getc(in);
 printf ("\nAddress in file pointer: %p",in);
 while (inChar != EOF) // or, !feof(in) ;while not file eof yet
 {
 numChars++; // incr. number of characters read
 totA += (int)inChar; // add ASCII value to total
 inChar = getc(in); // read char from file
 printf ("\n -> %p",in);
 }
 // calculate average
 avrgChar = (char)(totA/numChars);

 fclose (in);

 // display results
 printf ("For the file %s, %d chars. were read. \n The average char is: %c",
 filename,totA,avrgChar);

 getchar();
 return (0);
}

COMP213 8

Output from the program will indicate that the address stored in the file pointer does not change.

The file stream pointer (whether for input or output) is not a dynamic variable. The file stream
pointer always points to the same memory location, but the memory location contains different
data as the various file functions move data between the file and memory.

File Input: input functions read an appropriate amount of data from the file and store at the
memory location.

File output: output functions take the value at the memory location and write it to the file.

Conclusion
You are encouraged to complete all problems, but only problems #3 and #5 are required for submission.
Provide properly documents source code, output captures necessary (output prints only where reasonable).

