gﬁ{g THE UNIVERSITY COLLEGE
g OF THE CARIBOO
v Computing Science — COMP213

Lab Exercises #9 — C — Bit-Fiddling

Solutions

Exercises / Programming Problems

1.

C permits bit-manipulation and shifting with only integer based types. Why not floating-point types?

Integer types represent binary numbers using a form that is similar to decimal, with each binary
digit (bit) position presenting a 2" unit value. Any bit manipulation on these types does not
change the structure of the data, only the represented value.

Floating-point types use an advanced structure that segments a word into three: sign, exponent,
mantissa. Any bit manipulation or shifting may change bits unpredictably, or shift bits from one
segment to another (moving bits from exponents to mantissa), leading to cases where a non-FP
value is represents (NaN).

What is the output of the following program? You will require the use of an ASCII chart.

#include <stdio.h>

typedef struct
{

char a;
char b;
} twochar;

int main ()

{

twochar x;
x.a = "'C'; x.b = "'D";
short *p = (short¥*)é&x;

printf ("Value of x.a, x.b: %c, %c\n",x.a, x.b);
*p o= *p >> 1;
printf ("Value of x.a, x.b: %c, %c\n",x.a, x.b);
*p = *p << 1;
printf ("Value of x.a, x.b: %c, %c\n",x.a, x.b);

return 0;

}

The output of this program is as follows,

Value of x.a, x.b: C, D
Value of x.a, x.b: !, "
Value of x.a, x.b: B, D

Initially, the structure contains: 'C','D’ or: 01000011,01000100

Now the pointer points to the structure, but sees the bits as a 2-byte integer: a short.
And recall that on Intel platforms, the short's bytes are in reverse order,
so the pointer sees the number in binary as: 01000100,01000011

The short is then shift to the right by 1 bit: ~ 00100010,00100001
The structure's data is reflected as: 00100001,00100010 or "', ""
Finally, a shift left by 1, using the short view: 01000100,01000010
The structure's data is now reflected as: 01000010,01000100 or 'B','D'

COMP213

3. Write the code segment that inverts (complements) the last 3 bits of an int variable.

In the main(), initialise an int variable with a value, display the numeric value, invert last 3 bits (call
function), and display the variable's numeric value again.

Use the technique of masking with bitwise logic operators (AND &, OR |, NOT ~, XOR *)
Compare your solution with the following function that inverts the last n bits:

int invert_end (int num, int n)

{

int mask = 0; // mask
int bitval = 1; // bit position of 1
while (n—-— > 0) // loop to create mask for # of bits

{
mask = mask | bitval; // OR mask with bitval
bitval = bitval <<= 1;

}

return (num”mask); // rerurn original num XOR mask

}

The key to the program above is building a mask that contains 1's in the appropriate right-hand
side (LSB) and then XOR (eXclusive-OR) the mask with the value.

This, of course, works even simpler if the function already knows the exact number of bits
required to invert the number accordingly.

int main ()

{

int x = 9; // original value: 00001001
int mask = 7; // 00000111

printf ("x=%d\n",x); // display: 9
x = x ~ mask; // x XOR 7: 00001001 XOR 00000111 = 00001110
printf ("x=%d\n",x); // display: 14 (00001110)

return (0);

4. Write a function unitVal() that determines the unit value of the first bit in a short with a "1," starting from
the msb (most-significant bit). The returned value is an int. (It really does not matter if the value is
positive or negative).

An example of calling the function,

short value = 407; // 110010111
int power2 = 0;
power2 = unitval (value); // power2 is assigned 278 = 256

printf ("$d",unitval (1091)); // 1024 is displayed

Using an AND with a "1" in the appropriate place, any bit can examined for it's value (0 or 1).

Instead of coding little more than a dozen if-statements, a simple loop is probably the simplest
and most understandable technique in solving this problem.

The solution below begins a mask that starts with a "1" in the msb (most significant bit) and
progressively shifts the bit to a smaller unit value until a bit in the source number is "1"—at this
point, the mask directly describes the bit position, and hence unit value of the "right-most" one.

COMP213
int unitval (short n)
{
unsigned short mask = 32768; // 1000 0000 0000 0O0OO

// loop while (n AND mask) is zero, and mask is not zero

while (((n & mask) == 0) && (mask !'= 0))
mask = mask >> 1; // shift mask's bit down one unit value
return ((int)mask); // returns bit value or zero

5. Write a function countOnes() that returns the number of "1" (or "on") bits in an int parameter.

This function is similar to the previous function unitval(), except that rather than determining the
first 1, it determines all the ones, and returns the count.

int countOnes (int n)
{
unsigned int mask = 2147483648; // msb (32) bit = 2147483648
int i=0, // loop control
count=0; // count of 1's

// loop through: 4 bytes * 8 bits/byte = 32 bits
for (i=0; 1<32; i++) // loop 32 times
{

if ((n & mask) != 0) // 1f not a zero, must be a value >0
count++; // add one to count
mask = mask >> 1; // shift mask's bit down one unit value
}
return (count); // mask contains correct bit location or zero

6. Write a function xChange() that performs an interesting swap of bit values. The function has only a single
parameter of type char and returns a value of type char.

The bit values are swapped from the source to destination bytes, in the following fashion:

source byte: [0][1]1([2][3]1[4][5][6][7]

destination: [61[7]1041[5]1[21[31([0]1T[1]

Possible solutions can use bit masking, or a structure using a bit field structure within the function.

In a main() test program file, use the function char2bitstr() that returns the bits of a value in a char array:

// represent bits in val to array ps; ps 1s then returned
char* char2bitstr (char val, char* ps)

{

int 1i;
int size = (8*sizeof(char)); // calc # of bits in a char
for (i = size-1; i>=0; i--, val >>= 1)
psli] = (01 & wval) + '0';
pslsize]l = '\0';

return (ps);

COMP213

This function is rather simple, if one thing is ignored: that the data is a character or an integer. If
treated just as a sequence of bits, using ANDs to strip the data, shifts to move bits around, and
OR to put it all together, the solution is just step-by-step.

//source byte: [0][11[2]([31[4]11([51[6]1[7]
//destination: [6][71[4]([51[2]([31[0]1[1]
char xChange (char source)
{
char dest=0; // destination byte
// 4 masks used to strip bit groups from source byte
char maskl1=192, // [0][1]: 11000000
mask2=48, // [21[3]: 00110000
mask3=12, // [41[5]: 00001100
mask4=3; // [6]1[7]1: 00000011

// output (results) of mask and source byte

char outl = (source & maskl),
out2 = (source & mask2),
out3 = (source & mask3),
out4 = (source & maski);

14

// shift output byte to correct bit positions
outl = outl >> 6; // 6 bits to the right
out2 = out2 >> 2; // 2 bits to the right
out3 = out3 << 2; // 2 bits to the left
out4 out4d << 6; // 6 bits to the left

// combine (collapse) output bytes into destination byte
dest = outl | out2 | out3 | out4; // use OR | to combine

return (dest);

}

The following main() show how the function is used.
int main ()
{ char original = 73,

copy = 0;
char bitz[8]; // output array for displaying bits

printf ("Original char %c, value: %d, %s\n",
original, (int)original,char2bitstr(original,bitz));
copy = xChange (original);

printf (" Copy char %c, value: %d, %s\n",
copy, (int)copy, char2bitstr (copy,bitz));

return (0);

COMP213

7. Modify the function above so that it is a void-function, and has only a single char parameter that is
changed when the function completes (hint: use a call-by-reference parameter and proper function call).

The modifications are small and focus strictly on how the argument is passed to the function: it is
called through a call-by-reference parameter.

void xChange (char *source)
{
char dest=0; // destination byte
// 4 masks used to strip bit groups from source byte
char maskl1=192, // [0][1]: 11000000

mask2=48, // [2]1[3]: 00110000
mask3=12, // [4]1[5]: 00001100
mask4=3; // [61[71: 00000011

// output (results) of mask and source byte

char outl = (*source & maskl),
out2 = (*source & mask2),
out3 = (*source & mask3),
out4 = (*source & maski4);

4

// shift output byte to correct bit positions
outl = outl >> 6; // 6 bits to the right
out2 = out2 >> 2; // 2 bits to the right
out3 out3 << 2; // 2 bits to the left
out4d = outd << 6; // 6 bits to the left

// combine (collapse) output bytes into destination byte
dest = outl | out2 | out3 | out4; // use OR | to combine

*source = dest;

}

The following main() shows how the function call is changed with a call-by-reference argument.

int main ()
{
char original = 73;
char bitz[8]; // output array for displaying bits

printf ("Original char %c, value: %d, %s\n",
original, (int)original,char2bitstr(original,bitz));

xChange (&original); // note the "address of" operator: &
printf (" Copy char %c, value: %d, %s\n",

original, (int)original, char2bitstr (original,bitz));

return (0);

COMP213 6

8. Write a function rotateInt() that has three parameters: a char for direction ('R' or 'L"), the int to rotate, and
an int for the number of bits to rotate. Modify the method char2bitstr() and call it int2bitstr() and modify
it accordingly; use it to test rotateInt()

Bit-rotation is similar to bit-shifting, except that bits are not lost off the end. Such as, for a byte,

10010111 -> rotate right by 2 -> 11100101
01101001 -> rotate left by 3 -> 01001011

Keep in mind, that since it is an int, depending on the rotation, the value may change from positive to
negative (because of the sign bit on the msb-position).

Consider the simple examples of calling the function:

int x = 2;

x = rotateInt('R', x, 1); // x becomes 1
int y=0;

y = rotateInt ('L', 2, 3); // y becomes 32

A left or right shift, using << or >> respectively, moves an entire sequence of bits in one direction.
During the shift, any "extra" bits that get moved past the Isb or msb are lost completely.

The concept of a "rotate" is similar to a shift, but the lost bits are moved to the other end of the
word. There are two (2) approaches that can be considered,

- 1) create a mask that is the correct size for the appropriate bits that will be lost, use the
mask to record the bits, shift the original number, and shift the mask and place the bits on
the other end of the word

- 2) loop for the size of the rotate, recording each bit as it becomes "lost", shift the number,
and place the bit at the end; or

Both techniques are shown below,
*** Technique 1.
// rotate bits in source in a direction (L or R), and number of rotates (size)
int rotatelInt (char direction, int source, int size)
{

unsigned int interm = 0; // interm, value returned as result of rotation
unsigned int mask = 0; // mask created to strip "lost" bits

int extra = 0; // extra bits that are lost during shifting

int 1=0; // loop control

[

if ((size <= 0) || (size >= 31)) // if size is an invalid number
interm = 0; // return zero

else // size > 0, valid rotate size

{
switch (direction)
{
case 'L': // shift left
// create appropriate mask
mask = mask | 2147483648; // store bit in msb

for (i=1; i<size; i++) // count 1..size-1 times

{
mask = mask >> 1; // shift to the right
mask = mask | 2147483648; // store bit in msb

}

extra = source & mask; // determine bits that would be lost
extra = extra >> (32-size); // shift extra bits to other end
interm = source << size; // shift original value

interm = interm | extra; // combine lost bits with original

break;

COMP213

}

case 'R': // shift right
// create appropriate mask
mask = mask | 1; // store bit in 1sb
for (i=1; i<size; i++) // count 1..size-1 times
{

mask = mask << 1; // shift to the left

mask = mask | 1; // store bit in 1sb
}
extra = source & mask; // determine bits that would be lost
extra = extra << (32-size); // shift extra bits to other end
interm = source >> size; // shift original value
interm = interm | extra; // combine lost bits with original
break;
default: // unknown character
interm = 0; // return zero

}
}

return (interm); // return rotated value

*** Technique 2.

// rotate bits in source in a direction (L or R), and number of rotates (size)
int rotateInt2(char direction, int source, int size)
{
unsigned int mask_msb = 2147483648; // mask for msb
unsigned int mask_1lsb = 1; // mask for 1lsb
unsigned int interm = O0; // interm, value returned as result of rotation
unsigned int bit_msb = 0; // bit value at msb
unsigned int bit_lsb = 0; // bit value at 1lsb
int i=0; // loop control
[
if ((size <= 0) || (size >= 31)) // 1f size 1is an invalid number
interm = 0; // return zero
else // size > 0, valid rotate size
{
switch (direction)
{
case 'L': // shift left
interm = source; // copy
for (i=0; i<size; i++) // count for number of rotates
{
bit_msb = interm & mask_msb; // get msb bit
interm = interm << 1; // rotate left by 1
bit_msb = bit_msb >> 31; // move bit to other end
interm = interm | bit_msb; // combine bit with number
}
break;
case 'R': // shift right
interm = source; // copy
for (i=0; i<size; i++) // count for number of rotates
{
bit_lsb = interm & mask_1lsb; // get 1lsb bit
interm = interm >> 1; // rotate right by 1
bit_lsb = bit_1lsb << 31; // move bit to other end
interm = interm | bit_lsb; // combine bit with number
}
break;
default: // unknown character

interm = 0;
}
}

return (interm);

COMP213 8

9. Use the functions above (rotateInt() and int2bitstr()) to create an interesting pattern on the screen.

Ask the user for an integer value, then loop 32 times (number of bits in an int), displaying the binary
sequence for the integer on a single line, rotating to the left once, and displaying the updated value.

Essentially, this just requires a loop that calls rotatelnt() repeatedly with the same parameters,
creating a cycle that rotates the bits of the same integer. There should be at least 24 iterations,
which is the standard lines on a console screen.

This is left as a student solution.

Conclusion

There are no submissions required for these exercises. You are encouraged to complete all problems, obtaining
help from your instructor or fellow students.

